LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 31

Search options

  1. Article ; Online: Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials.

    Fernández-Galiana, Álvaro / Bibikova, Olga / Vilms Pedersen, Simon / Stevens, Molly M

    Advanced materials (Deerfield Beach, Fla.)

    2023  , Page(s) e2210807

    Abstract: Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular ... ...

    Abstract Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
    Language English
    Publishing date 2023-03-31
    Publishing country Germany
    Document type Journal Article ; Review
    ZDB-ID 1474949-X
    ISSN 1521-4095 ; 0935-9648
    ISSN (online) 1521-4095
    ISSN 0935-9648
    DOI 10.1002/adma.202210807
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Frequency-Dependent Squeezing for Advanced LIGO.

    McCuller, L / Whittle, C / Ganapathy, D / Komori, K / Tse, M / Fernandez-Galiana, A / Barsotti, L / Fritschel, P / MacInnis, M / Matichard, F / Mason, K / Mavalvala, N / Mittleman, R / Yu, Haocun / Zucker, M E / Evans, M

    Physical review letters

    2020  Volume 124, Issue 17, Page(s) 171102

    Abstract: The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away ... ...

    Abstract The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."
    Language English
    Publishing date 2020-05-15
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.124.171102
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: A simple and fast spectroscopy-based technique for Covid-19 diagnosis.

    Kitane, Driss Lahlou / Loukman, Salma / Marchoudi, Nabila / Fernandez-Galiana, Alvaro / El Ansari, Fatima Zahra / Jouali, Farah / Badir, Jamal / Gala, Jean-Luc / Bertsimas, Dimitris / Azami, Nawfal / Lakbita, Omar / Moudam, Omar / Benhida, Rachid / Fekkak, Jamal

    Scientific reports

    2021  Volume 11, Issue 1, Page(s) 16740

    Abstract: The coronavirus pandemic, which appeared in Wuhan, China, in December 2019, rapidly spread all over the world in only a few weeks. Faster testing techniques requiring less resources are key in managing the pandemic, either to enable larger scale testing ... ...

    Abstract The coronavirus pandemic, which appeared in Wuhan, China, in December 2019, rapidly spread all over the world in only a few weeks. Faster testing techniques requiring less resources are key in managing the pandemic, either to enable larger scale testing or even just provide developing countries with limited resources, particularly in Africa, means to perform tests to manage the crisis. Here, we report an unprecedented, rapid, reagent-free and easy-to-use screening spectroscopic method for the detection of SARS-CoV-2 on RNA extracts. This method, validated on clinical samples collected from 280 patients with quantitative predictive scores on both positive and negative samples, is based on a multivariate analysis of FTIR spectra of RNA extracts. This technique, in agreement with RT-PCR, achieves 97.8% accuracy, 97% sensitivity and 98.3% specificity while reducing the testing time post RNA extraction from hours to minutes. Furthermore, this technique can be used in several laboratories with limited resources.
    MeSH term(s) COVID-19 Testing/methods ; Humans ; RNA, Viral/analysis ; RNA, Viral/chemistry ; RNA, Viral/isolation & purification ; Spectroscopy, Fourier Transform Infrared ; Time Factors
    Chemical Substances RNA, Viral
    Language English
    Publishing date 2021-08-18
    Publishing country England
    Document type Journal Article
    ZDB-ID 2615211-3
    ISSN 2045-2322 ; 2045-2322
    ISSN (online) 2045-2322
    ISSN 2045-2322
    DOI 10.1038/s41598-021-95568-5
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article ; Online: Point Absorber Limits to Future Gravitational-Wave Detectors.

    Jia, Wenxuan / Yamamoto, Hiroaki / Kuns, Kevin / Effler, Anamaria / Evans, Matthew / Fritschel, Peter / Abbott, R / Adams, C / Adhikari, R X / Ananyeva, A / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Austin, C / Baer, A M / Ball, M / Ballmer, S W /
    Banagiri, S / Barker, D / Barsotti, L / Bartlett, J / Berger, B K / Betzwieser, J / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, C D / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Brooks, A F / Brown, D D / Buikema, A / Cahillane, C / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Compton, C M / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Dooley, K L / Driggers, J C / Dupej, P / Dwyer, S E / Etzel, T / Evans, T M / Feicht, J / Fernandez-Galiana, A / Frolov, V V / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Green, A C / Gustafson, E K / Gustafson, R / Hall, E D / Hanks, J / Hanson, J / Hardwick, T / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / Kasprzack, M / Kawabe, K / Kijbunchoo, N / King, P J / Kissel, J S / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Mansell, G L / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / Matichard, F / Mavalvala, N / McCarthy, R / McClelland, D E / McCormick, S / McCuller, L / McIver, J / McRae, T / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Mullavey, A / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, Richard J / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Pele, A / Penhorwood, R / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetzl, D / Schnabel, R / Schofield, R M S / Schwartz, E / Sellers, D / Shaffer, T / Sigg, D / Slagmolen, B J J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Tse, M / Urban, A L / Vajente, G / Valdes, G / Vander-Hyde, D C / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vo, T / Vorvick, C / Wade, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Whittle, C / Willke, B / Wipf, C C / Xiao, L / Yu, Hang / Yu, Haocun / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2021  Volume 127, Issue 24, Page(s) 241102

    Abstract: High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface ... ...

    Abstract High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise.
    Language English
    Publishing date 2021-12-24
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.127.241102
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article ; Online: Approaching the motional ground state of a 10-kg object.

    Whittle, Chris / Hall, Evan D / Dwyer, Sheila / Mavalvala, Nergis / Sudhir, Vivishek / Abbott, R / Ananyeva, A / Austin, C / Barsotti, L / Betzwieser, J / Blair, C D / Brooks, A F / Brown, D D / Buikema, A / Cahillane, C / Driggers, J C / Effler, A / Fernandez-Galiana, A / Fritschel, P /
    Frolov, V V / Hardwick, T / Kasprzack, M / Kawabe, K / Kijbunchoo, N / Kissel, J S / Mansell, G L / Matichard, F / McCuller, L / McRae, T / Mullavey, A / Pele, A / Schofield, R M S / Sigg, D / Tse, M / Vajente, G / Vander-Hyde, D C / Yu, Hang / Yu, Haocun / Adams, C / Adhikari, R X / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Baer, A M / Ball, M / Ballmer, S W / Banagiri, S / Barker, D / Bartlett, J / Berger, B K / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Compton, C M / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Dooley, K L / Dupej, P / Etzel, T / Evans, M / Evans, T M / Feicht, J / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Green, A C / Gustafson, E K / Gustafson, R / Hanks, J / Hanson, J / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / King, P J / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / McCarthy, R / McClelland, D E / McCormick, S / McIver, J / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, Richard J / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Penhorwood, R / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetz, D / Schnabel, R / Schwartz, E / Sellers, D / Shaffer, T / Slagmolen, B J J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Urban, A L / Valdes, G / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vo, T / Vorvick, C / Wade, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Willke, B / Wipf, C C / Xiao, L / Yamamoto, H / Zhang, L / Zucker, M E / Zweizig, J

    Science (New York, N.Y.)

    2021  Volume 372, Issue 6548, Page(s) 1333–1336

    Abstract: The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's ... ...

    Abstract The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.
    Language English
    Publishing date 2021-06-17
    Publishing country United States
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 128410-1
    ISSN 1095-9203 ; 0036-8075
    ISSN (online) 1095-9203
    ISSN 0036-8075
    DOI 10.1126/science.abh2634
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article ; Online: Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy.

    Tse, M / Yu, Haocun / Kijbunchoo, N / Fernandez-Galiana, A / Dupej, P / Barsotti, L / Blair, C D / Brown, D D / Dwyer, S E / Effler, A / Evans, M / Fritschel, P / Frolov, V V / Green, A C / Mansell, G L / Matichard, F / Mavalvala, N / McClelland, D E / McCuller, L /
    McRae, T / Miller, J / Mullavey, A / Oelker, E / Phinney, I Y / Sigg, D / Slagmolen, B J J / Vo, T / Ward, R L / Whittle, C / Abbott, R / Adams, C / Adhikari, R X / Ananyeva, A / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Austin, C / Baer, A M / Ball, M / Ballmer, S W / Banagiri, S / Barker, D / Bartlett, J / Berger, B K / Betzwieser, J / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Brooks, A F / Buikema, A / Cahillane, C / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Driggers, J C / Etzel, T / Evans, T M / Feicht, J / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Gupta, Anchal / Gustafson, E K / Gustafson, R / Hanks, J / Hanson, J / Hardwick, T / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / Kasprzack, M / Kawabe, K / King, P J / Kissel, J S / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / McCarthy, R / McCormick, S / McIver, J / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, R J / O'Reilly, B / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Pele, A / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetzl, D / Schnabel, R / Schofield, R M S / Schwartz, E / Sellers, D / Shaffer, T J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Urban, A L / Vajente, G / Valdes, G / Vander-Hyde, D C / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vorvick, C / Wade, M / Warner, J / Weaver, B / Weiss, R / Willke, B / Wipf, C C / Xiao, L / Yamamoto, H / Yap, M J / Yu, Hang / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2019  Volume 123, Issue 23, Page(s) 231107

    Abstract: The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves ... ...

    Abstract The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).
    Language English
    Publishing date 2019-12-23
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.123.231107
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article ; Online: Point absorbers in Advanced LIGO.

    Brooks, Aidan F / Vajente, Gabriele / Yamamoto, Hiro / Abbott, Rich / Adams, Carl / Adhikari, Rana X / Ananyeva, Alena / Appert, Stephen / Arai, Koji / Areeda, Joseph S / Asali, Yasmeen / Aston, Stuart M / Austin, Corey / Baer, Anne M / Ball, Matthew / Ballmer, Stefan W / Banagiri, Sharan / Barker, David / Barsotti, Lisa /
    Bartlett, Jeffrey / Berger, Beverly K / Betzwieser, Joseph / Bhattacharjee, Dripta / Billingsley, Garilynn / Biscans, Sebastien / Blair, Carl D / Blair, Ryan M / Bode, Nina / Booker, Phillip / Bork, Rolf / Bramley, Alyssa / Brown, Daniel D / Buikema, Aaron / Cahillane, Craig / Cannon, Kipp C / Cao, Huy Tuong / Chen, Xu / Ciobanu, Alexei A / Clara, Filiberto / Compton, Camilla / Cooper, Sam J / Corley, Kenneth R / Countryman, Stefan T / Covas, Pep B / Coyne, Dennis C / Datrier, Laurence E / Davis, Derek / Difronzo, Chiara D / Dooley, Katherine L / Driggers, Jenne C / Dupej, Peter / Dwyer, Sheila E / Effler, Anamaria / Etzel, Todd / Evans, Matthew / Evans, Tom M / Feicht, Jon / Fernandez-Galiana, Alvaro / Fritschel, Peter / Frolov, Valery V / Fulda, Paul / Fyffe, Michael / Giaime, Joe A / Giardina, Dwayne D / Godwin, Patrick / Goetz, Evan / Gras, Slawomir / Gray, Corey / Gray, Rachel / Green, Anna C / Gupta, Anchal / Gustafson, Eric K / Gustafson, Dick / Hall, Evan / Hanks, Jonathan / Hanson, Joe / Hardwick, Terra / Hasskew, Raine K / Heintze, Matthew C / Helmling-Cornell, Adrian F / Holland, Nathan A / Izmui, Kiamu / Jia, Wenxuan / Jones, Jeff D / Kandhasamy, Shivaraj / Karki, Sudarshan / Kasprzack, Marie / Kawabe, Keita / Kijbunchoo, Nutsinee / King, Peter J / Kissel, Jeffrey S / Kumar, Rahul / Landry, Michael / Lane, Benjamin B / Lantz, Brian / Laxen, Michael / Lecoeuche, Yannick K / Leviton, Jessica / Jian, Liu / Lormand, Marc / Lundgren, Andrew P / Macas, Ronaldas / Macinnis, Myron / Macleod, Duncan M / Mansell, Georgia L / Marka, Szabolcs / Marka, Zsuzsanna / Martynov, Denis V / Mason, Ken / Massinger, Thomas J / Matichard, Fabrice / Mavalvala, Nergis / McCarthy, Richard / McClelland, David E / McCormick, Scott / McCuller, Lee / McIver, Jessica / McRae, Terry / Mendell, Gregory / Merfeld, Kara / Merilh, Edmond L / Meylahn, Fabian / Mistry, Timesh / Mittleman, Richard / Moreno, Gerardo / Mow-Lowry, Conor M / Mozzon, Simone / Mullavey, Adam / Nelson, Timothy J / Nguyen, Philippe / Nuttall, Laura K / Oberling, Jason / Oram, Richard J / Osthelder, Charles / Ottaway, David J / Overmier, Harry / Palamos, Jordan R / Parker, William / Payne, Ethan / Pele, Arnaud / Penhorwood, Reilly / Perez, Carlos J / Pirello, Marc / Radkins, Hugh / Ramirez, Karla E / Richardson, Jonathan W / Riles, Keith / Robertson, Norna A / Rollins, Jameson G / Romel, Chandra L / Romie, Janeen H / Ross, Michael P / Ryan, Kyle / Sadecki, Travis / Sanchez, Eduardo J / Sanchez, Luis E / Tiruppatturrajamanikkam, Saravanan R / Savage, Richard L / Schaetzl, Dean / Schnabel, Roman / Schofield, Robert M / Schwartz, Eyal / Sellers, Danny / Shaffer, Thomas / Sigg, Daniel / Slagmolen, Bram J / Smith, Joshua R / Soni, Siddharth / Sorazu, Borja / Spencer, Andrew P / Strain, Ken A / Sun, Ling / Szczepanczyk, Marek J / Thomas, Michael / Thomas, Patrick / Thorne, Keith A / Toland, Karl / Torrie, Calum I / Traylor, Gary / Tse, Maggie / Urban, Alexander L / Valdes, Guillermo / Vander-Hyde, Daniel C / Veitch, Peter J / Venkateswara, Krishna / Venugopalan, Gautam / Viets, Aaron D / Vo, Thomas / Vorvick, Cheryl / Wade, Madeline / Ward, Robert L / Warner, Jim / Weaver, Betsy / Weiss, Rainer / Whittle, Chris / Willke, Benno / Wipf, Christopher C / Xiao, Liting / Yu, Hang / Yu, Haocun / Zhang, Liyuan / Zucker, Michael E / Zweizig, John

    Applied optics

    2021  Volume 60, Issue 13, Page(s) 4047–4063

    Abstract: Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce ... ...

    Abstract Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.
    Language English
    Publishing date 2021-05-03
    Publishing country United States
    Document type Journal Article
    ISSN 1539-4522
    ISSN (online) 1539-4522
    DOI 10.1364/AO.419689
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  8. Article ; Online: First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO.

    Blair, Carl / Gras, Slawek / Abbott, Richard / Aston, Stuart / Betzwieser, Joseph / Blair, David / DeRosa, Ryan / Evans, Matthew / Frolov, Valera / Fritschel, Peter / Grote, Hartmut / Hardwick, Terra / Liu, Jian / Lormand, Marc / Miller, John / Mullavey, Adam / O'Reilly, Brian / Zhao, Chunnong / Abbott, B P /
    Abbott, T D / Adams, C / Adhikari, R X / Anderson, S B / Ananyeva, A / Appert, S / Arai, K / Ballmer, S W / Barker, D / Barr, B / Barsotti, L / Bartlett, J / Bartos, I / Batch, J C / Bell, A S / Billingsley, G / Birch, J / Biscans, S / Biwer, C / Bork, R / Brooks, A F / Ciani, G / Clara, F / Countryman, S T / Cowart, M J / Coyne, D C / Cumming, A / Cunningham, L / Danzmann, K / Da Silva Costa, C F / Daw, E J / DeBra, D / DeSalvo, R / Dooley, K L / Doravari, S / Driggers, J C / Dwyer, S E / Effler, A / Etzel, T / Evans, T M / Factourovich, M / Fair, H / Fernández Galiana, A / Fisher, R P / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Goetz, E / Goetz, R / Gray, C / Gushwa, K E / Gustafson, E K / Gustafson, R / Hall, E D / Hammond, G / Hanks, J / Hanson, J / Harry, G M / Heintze, M C / Heptonstall, A W / Hough, J / Izumi, K / Jones, R / Kandhasamy, S / Karki, S / Kasprzack, M / Kaufer, S / Kawabe, K / Kijbunchoo, N / King, E J / King, P J / Kissel, J S / Korth, W Z / Kuehn, G / Landry, M / Lantz, B / Lockerbie, N A / Lundgren, A P / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Markosyan, A S / Maros, E / Martin, I W / Martynov, D V / Mason, K / Massinger, T J / Matichard, F / Mavalvala, N / McCarthy, R / McClelland, D E / McCormick, S / McIntyre, G / McIver, J / Mendell, G / Merilh, E L / Meyers, P M / Mittleman, R / Moreno, G / Mueller, G / Munch, J / Nuttall, L K / Oberling, J / Oppermann, P / Oram, Richard J / Ottaway, D J / Overmier, H / Palamos, J R / Paris, H R / Parker, W / Pele, A / Penn, S / Phelps, M / Pierro, V / Pinto, I / Principe, M / Prokhorov, L G / Puncken, O / Quetschke, V / Quintero, E A / Raab, F J / Radkins, H / Raffai, P / Reid, S / Reitze, D H / Robertson, N A / Rollins, J G / Roma, V J / Romie, J H / Rowan, S / Ryan, K / Sadecki, T / Sanchez, E J / Sandberg, V / Savage, R L / Schofield, R M S / Sellers, D / Shaddock, D A / Shaffer, T J / Shapiro, B / Shawhan, P / Shoemaker, D H / Sigg, D / Slagmolen, B J J / Smith, B / Smith, J R / Sorazu, B / Staley, A / Strain, K A / Tanner, D B / Taylor, R / Thomas, M / Thomas, P / Thorne, K A / Thrane, E / Torrie, C I / Traylor, G / Vajente, G / Valdes, G / van Veggel, A A / Vecchio, A / Veitch, P J / Venkateswara, K / Vo, T / Vorvick, C / Walker, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Weßels, P / Willke, B / Wipf, C C / Worden, J / Wu, G / Yamamoto, H / Yancey, C C / Yu, Hang / Yu, Haocun / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2017  Volume 118, Issue 15, Page(s) 151102

    Abstract: Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric ...

    Abstract Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
    Language English
    Publishing date 2017-04-14
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.118.151102
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  9. Article ; Online: Effects of transients in LIGO suspensions on searches for gravitational waves.

    Walker, M / Abbott, T D / Aston, S M / González, G / Macleod, D M / McIver, J / Abbott, B P / Abbott, R / Adams, C / Adhikari, R X / Anderson, S B / Ananyeva, A / Appert, S / Arai, K / Ballmer, S W / Barker, D / Barr, B / Barsotti, L / Bartlett, J /
    Bartos, I / Batch, J C / Bell, A S / Betzwieser, J / Billingsley, G / Birch, J / Biscans, S / Biwer, C / Blair, C D / Bork, R / Brooks, A F / Ciani, G / Clara, F / Countryman, S T / Cowart, M J / Coyne, D C / Cumming, A / Cunningham, L / Danzmann, K / Da Silva Costa, C F / Daw, E J / DeBra, D / DeRosa, R T / DeSalvo, R / Dooley, K L / Doravari, S / Driggers, J C / Dwyer, S E / Effler, A / Etzel, T / Evans, M / Evans, T M / Factourovich, M / Fair, H / Fernández Galiana, A / Fisher, R P / Fritschel, P / Frolov, V V / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Goetz, E / Goetz, R / Gras, S / Gray, C / Grote, H / Gushwa, K E / Gustafson, E K / Gustafson, R / Hall, E D / Hammond, G / Hanks, J / Hanson, J / Hardwick, T / Harry, G M / Heintze, M C / Heptonstall, A W / Hough, J / Izumi, K / Jones, R / Kandhasamy, S / Karki, S / Kasprzack, M / Kaufer, S / Kawabe, K / Kijbunchoo, N / King, E J / King, P J / Kissel, J S / Korth, W Z / Kuehn, G / Landry, M / Lantz, B / Lockerbie, N A / Lormand, M / Lundgren, A P / MacInnis, M / Márka, S / Márka, Z / Markosyan, A S / Maros, E / Martin, I W / Martynov, D V / Mason, K / Massinger, T J / Matichard, F / Mavalvala, N / McCarthy, R / McClelland, D E / McCormick, S / McIntyre, G / Mendell, G / Merilh, E L / Meyers, P M / Miller, J / Mittleman, R / Moreno, G / Mueller, G / Mullavey, A / Munch, J / Nuttall, L K / Oberling, J / Oliver, M / Oppermann, P / Oram, Richard J / O'Reilly, B / Ottaway, D J / Overmier, H / Palamos, J R / Paris, H R / Parker, W / Pele, A / Penn, S / Phelps, M / Pierro, V / Pinto, I / Principe, M / Prokhorov, L G / Puncken, O / Quetschke, V / Quintero, E A / Raab, F J / Radkins, H / Raffai, P / Reid, S / Reitze, D H / Robertson, N A / Rollins, J G / Roma, V J / Romie, J H / Rowan, S / Ryan, K / Sadecki, T / Sanchez, E J / Sandberg, V / Savage, R L / Schofield, R M S / Sellers, D / Shaddock, D A / Shaffer, T J / Shapiro, B / Shawhan, P / Shoemaker, D H / Sigg, D / Slagmolen, B J J / Smith, B / Smith, J R / Sorazu, B / Staley, A / Strain, K A / Tanner, D B / Taylor, R / Thomas, M / Thomas, P / Thorne, K A / Thrane, E / Torrie, C I / Traylor, G / Tuyenbayev, D / Vajente, G / Valdes, G / van Veggel, A A / Vecchio, A / Veitch, P J / Venkateswara, K / Vo, T / Vorvick, C / Ward, R L / Warner, J / Weaver, B / Weiss, R / Weßels, P / Willke, B / Wipf, C C / Worden, J / Wu, G / Yamamoto, H / Yancey, C C / Yu, Hang / Yu, Haocun / Zhang, L / Zucker, M E / Zweizig, J

    The Review of scientific instruments

    2017  Volume 88, Issue 12, Page(s) 124501

    Abstract: This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of ... ...

    Abstract This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.
    Language English
    Publishing date 2017-12
    Publishing country United States
    Document type Journal Article
    ZDB-ID 209865-9
    ISSN 1089-7623 ; 0034-6748
    ISSN (online) 1089-7623
    ISSN 0034-6748
    DOI 10.1063/1.5000264
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  10. Article ; Online: Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run.

    Abbott, R / Abbott, T D / Acernese, F / Ackley, K / Adams, C / Adhikari, N / Adhikari, R X / Adya, V B / Affeldt, C / Agarwal, D / Agathos, M / Agatsuma, K / Aggarwal, N / Aguiar, O D / Aiello, L / Ain, A / Ajith, P / Albanesi, S / Allocca, A /
    Altin, P A / Amato, A / Anand, C / Anand, S / Ananyeva, A / Anderson, S B / Anderson, W G / Andrade, T / Andres, N / Andrić, T / Angelova, S V / Ansoldi, S / Antelis, J M / Antier, S / Appert, S / Arai, K / Araya, M C / Areeda, J S / Arène, M / Arnaud, N / Aronson, S M / Arun, K G / Asali, Y / Ashton, G / Assiduo, M / Aston, S M / Astone, P / Aubin, F / Austin, C / Babak, S / Badaracco, F / Bader, M K M / Badger, C / Bae, S / Baer, A M / Bagnasco, S / Bai, Y / Baird, J / Ball, M / Ballardin, G / Ballmer, S W / Balsamo, A / Baltus, G / Banagiri, S / Bankar, D / Barayoga, J C / Barbieri, C / Barish, B C / Barker, D / Barneo, P / Barone, F / Barr, B / Barsotti, L / Barsuglia, M / Barta, D / Bartlett, J / Barton, M A / Bartos, I / Bassiri, R / Basti, A / Bawaj, M / Bayley, J C / Baylor, A C / Bazzan, M / Bécsy, B / Bedakihale, V M / Bejger, M / Belahcene, I / Benedetto, V / Beniwal, D / Bennett, T F / Bentley, J D / BenYaala, M / Bergamin, F / Berger, B K / Bernuzzi, S / Berry, C P L / Bersanetti, D / Bertolini, A / Betzwieser, J / Beveridge, D / Bhandare, R / Bhardwaj, U / Bhattacharjee, D / Bhaumik, S / Bilenko, I A / Billingsley, G / Bini, S / Birney, R / Birnholtz, O / Biscans, S / Bischi, M / Biscoveanu, S / Bisht, A / Biswas, B / Bitossi, M / Bizouard, M-A / Blackburn, J K / Blair, C D / Blair, D G / Blair, R M / Bobba, F / Bode, N / Boer, M / Bogaert, G / Boldrini, M / Bonavena, L D / Bondu, F / Bonilla, E / Bonnand, R / Booker, P / Boom, B A / Bork, R / Boschi, V / Bose, N / Bose, S / Bossilkov, V / Boudart, V / Bouffanais, Y / Bozzi, A / Bradaschia, C / Brady, P R / Bramley, A / Branch, A / Branchesi, M / Brau, J E / Breschi, M / Briant, T / Briggs, J H / Brillet, A / Brinkmann, M / Brockill, P / Brooks, A F / Brooks, J / Brown, D D / Brunett, S / Bruno, G / Bruntz, R / Bryant, J / Bulik, T / Bulten, H J / Buonanno, A / Buscicchio, R / Buskulic, D / Buy, C / Byer, R L / Cadonati, L / Cagnoli, G / Cahillane, C / Bustillo, J Calderón / Callaghan, J D / Callister, T A / Calloni, E / Cameron, J / Camp, J B / Canepa, M / Canevarolo, S / Cannavacciuolo, M / Cannon, K C / Cao, H / Capote, E / Carapella, G / Carbognani, F / Carlin, J B / Carney, M F / Carpinelli, M / Carrillo, G / Carullo, G / Carver, T L / Diaz, J Casanueva / Casentini, C / Castaldi, G / Caudill, S / Cavaglià, M / Cavalier, F / Cavalieri, R / Ceasar, M / Cella, G / Cerdá-Durán, P / Cesarini, E / Chaibi, W / Chakravarti, K / Subrahmanya, S Chalathadka / Champion, E / Chan, C-H / Chan, C / Chan, C L / Chan, K / Chandra, K / Chanial, P / Chao, S / Charlton, P / Chase, E A / Chassande-Mottin, E / Chatterjee, C / Chatterjee, Debarati / Chatterjee, Deep / Chaturvedi, M / Chaty, S / Chatziioannou, K / Chen, H Y / Chen, J / Chen, X / Chen, Y / Chen, Z / Cheng, H / Cheong, C K / Cheung, H Y / Chia, H Y / Chiadini, F / Chiarini, G / Chierici, R / Chincarini, A / Chiofalo, M L / Chiummo, A / Cho, G / Cho, H S / Choudhary, R K / Choudhary, S / Christensen, N / Chu, Q / Chua, S / Chung, K W / Ciani, G / Ciecielag, P / Cieślar, M / Cifaldi, M / Ciobanu, A A / Ciolfi, R / Cipriano, F / Cirone, A / Clara, F / Clark, E N / Clark, J A / Clarke, L / Clearwater, P / Clesse, S / Cleva, F / Coccia, E / Codazzo, E / Cohadon, P-F / Cohen, D E / Cohen, L / Colleoni, M / Collette, C G / Colombo, A / Colpi, M / Compton, C M / Constancio, M / Conti, L / Cooper, S J / Corban, P / Corbitt, T R / Cordero-Carrión, I / Corezzi, S / Corley, K R / Cornish, N / Corre, D / Corsi, A / Cortese, S / Costa, C A / Cotesta, R / Coughlin, M W / Coulon, J-P / Countryman, S T / Cousins, B / Couvares, P / Coward, D M / Cowart, M J / Coyne, D C / Coyne, R / Creighton, J D E / Creighton, T D / Criswell, A W / Croquette, M / Crowder, S G / Cudell, J R / Cullen, T J / Cumming, A / Cummings, R / Cunningham, L / Cuoco, E / Curyło, M / Dabadie, P / Canton, T Dal / Dall'Osso, S / Dálya, G / Dana, A / DaneshgaranBajastani, L M / D'Angelo, B / Danilishin, S / D'Antonio, S / Danzmann, K / Darsow-Fromm, C / Dasgupta, A / Datrier, L E H / Datta, S / Dattilo, V / Dave, I / Davier, M / Davies, G S / Davis, D / Davis, M C / Daw, E J / Dean, R / DeBra, D / Deenadayalan, M / Degallaix, J / De Laurentis, M / Deléglise, S / Del Favero, V / De Lillo, F / De Lillo, N / Del Pozzo, W / DeMarchi, L M / De Matteis, F / D'Emilio, V / Demos, N / Dent, T / Depasse, A / De Pietri, R / De Rosa, R / De Rossi, C / DeSalvo, R / De Simone, R / Dhurandhar, S / Díaz, M C / Diaz-Ortiz, M / Didio, N A / Dietrich, T / Di Fiore, L / Di Fronzo, C / Di Giorgio, C / Di Giovanni, F / Di Giovanni, M / Di Girolamo, T / Di Lieto, A / Ding, B / Di Pace, S / Di Palma, I / Di Renzo, F / Divakarla, A K / Dmitriev, A / Doctor, Z / D'Onofrio, L / Donovan, F / Dooley, K L / Doravari, S / Dorrington, I / Drago, M / Driggers, J C / Drori, Y / Ducoin, J-G / Dupej, P / Durante, O / D'Urso, D / Duverne, P-A / Dwyer, S E / Eassa, C / Easter, P J / Ebersold, M / Eckhardt, T / Eddolls, G / Edelman, B / Edo, T B / Edy, O / Effler, A / Eichholz, J / Eikenberry, S S / Eisenmann, M / Eisenstein, R A / Ejlli, A / Engelby, E / Errico, L / Essick, R C / Estellés, H / Estevez, D / Etienne, Z / Etzel, T / Evans, M / Evans, T M / Ewing, B E / Fafone, V / Fair, H / Fairhurst, S / Farah, A M / Farinon, S / Farr, B / Farr, W M / Farrow, N W / Fauchon-Jones, E J / Favaro, G / Favata, M / Fays, M / Fazio, M / Feicht, J / Fejer, M M / Fekecs, B / Fenyvesi, E / Ferguson, D L / Fernandez-Galiana, A / Ferrante, I / Ferreira, T A / Fidecaro, F / Figura, P / Fiori, I / Fishbach, M / Fisher, R P / Fittipaldi, R / Fiumara, V / Flaminio, R / Floden, E / Fong, H / Font, J A / Fornal, B / Forsyth, P W F / Franke, A / Frasca, S / Frasconi, F / Frederick, C / Freed, J P / Frei, Z / Freise, A / Frey, R / Fritschel, P / Frolov, V V / Fronzé, G G / Fulda, P / Fyffe, M / Gabbard, H A / Gadre, B U / Gair, J R / Gais, J / Galaudage, S / Gamba, R / Ganapathy, D / Ganguly, A / Gaonkar, S G / Garaventa, B / García-Núñez, C / García-Quirós, C / Garufi, F / Gateley, B / Gaudio, S / Gayathri, V / Gemme, G / Gennai, A / George, J / Gerberding, O / Gergely, L / Gewecke, P / Ghonge, S / Ghosh, Abhirup / Ghosh, Archisman / Ghosh, Shaon / Ghosh, Shrobana / Giacomazzo, B / Giacoppo, L / Giaime, J A / Giardina, K D / Gibson, D R / Gier, C / Giesler, M / Giri, P / Gissi, F / Glanzer, J / Gleckl, A E / Godwin, P / Goetz, E / Goetz, R / Gohlke, N / Goncharov, B / González, G / Gopakumar, A / Gosselin, M / Gouaty, R / Gould, D W / Grace, B / Grado, A / Granata, M / Granata, V / Grant, A / Gras, S / Grassia, P / Gray, C / Gray, R / Greco, G / Green, A C / Green, R / Gretarsson, A M / Gretarsson, E M / Griffith, D / Griffiths, W / Griggs, H L / Grignani, G / Grimaldi, A / Grimm, S J / Grote, H / Grunewald, S / Gruning, P / Guerra, D / Guidi, G M / Guimaraes, A R / Guixé, G / Gulati, H K / Guo, H-K / Guo, Y / Gupta, Anchal / Gupta, Anuradha / Gupta, P / Gustafson, E K / Gustafson, R / Guzman, F / Haegel, L / Halim, O / Hall, E D / Hamilton, E Z / Hammond, G / Haney, M / Hanks, J / Hanna, C / Hannam, M D / Hannuksela, O / Hansen, H / Hansen, T J / Hanson, J / Harder, T / Hardwick, T / Haris, K / Harms, J / Harry, G M / Harry, I W / Hartwig, D / Haskell, B / Hasskew, R K / Haster, C-J / Haughian, K / Hayes, F J / Healy, J / Heidmann, A / Heidt, A / Heintze, M C / Heinze, J / Heinzel, J / Heitmann, H / Hellman, F / Hello, P / Helmling-Cornell, A F / Hemming, G / Hendry, M / Heng, I S / Hennes, E / Hennig, J / Hennig, M H / Hernandez, A G / Vivanco, F Hernandez / Heurs, M / Hild, S / Hill, P / Hines, A S / Hochheim, S / Hofman, D / Hohmann, J N / Holcomb, D G / Holland, N A / Hollows, I J / Holmes, Z J / Holt, K / Holz, D E / Hopkins, P / Hough, J / Hourihane, S / Howell, E J / Hoy, C G / Hoyland, D / Hreibi, A / Hsu, Y / Huang, Y / Hübner, M T / Huddart, A D / Hughey, B / Hui, V / Husa, S / Huttner, S H / Huxford, R / Huynh-Dinh, T / Idzkowski, B / Iess, A / Ingram, C / Isi, M / Isleif, K / Iyer, B R / JaberianHamedan, V / Jacqmin, T / Jadhav, S J / Jadhav, S P / James, A L / Jan, A Z / Jani, K / Janquart, J / Janssens, K / Janthalur, N N / Jaranowski, P / Jariwala, D / Jaume, R / Jenkins, A C / Jenner, K / Jeunon, M / Jia, W / Johns, G R / Jones, A W / Jones, D I / Jones, J D / Jones, P / Jones, R / Jonker, R J G / Ju, L / Junker, J / Juste, V / Kalaghatgi, C V / Kalogera, V / Kamai, B / Kandhasamy, S / Kang, G / Kanner, J B / Kao, Y / Kapadia, S J / Kapasi, D P / Karat, S / Karathanasis, C / Karki, S / Kashyap, R / Kasprzack, M / Kastaun, W / Katsanevas, S / Katsavounidis, E / Katzman, W / Kaur, T / Kawabe, K / Kéfélian, F / Keitel, D / Key, J S / Khadka, S / Khalili, F Y / Khan, S / Khazanov, E A / Khetan, N / Khursheed, M / Kijbunchoo, N / Kim, C / Kim, J C / Kim, K / Kim, W S / Kim, Y-M / Kimball, C / Kinley-Hanlon, M / Kirchhoff, R / Kissel, J S / Kleybolte, L / Klimenko, S / Knee, A M / Knowles, T D / Knyazev, E / Koch, P / Koekoek, G / Koley, S / Kolitsidou, P / Kolstein, M / Komori, K / Kondrashov, V / Kontos, A / Koper, N / Korobko, M / Kovalam, M / Kozak, D B / Kringel, V / Krishnendu, N V / Królak, A / Kuehn, G / Kuei, F / Kuijer, P / Kumar, A / Kumar, P / Kumar, Rahul / Kumar, Rakesh / Kuns, K / Kuwahara, S / Lagabbe, P / Laghi, D / Lalande, E / Lam, T L / Lamberts, A / Landry, M / Lane, B B / Lang, R N / Lange, J / Lantz, B / La Rosa, I / Lartaux-Vollard, A / Lasky, P D / Laxen, M / Lazzarini, A / Lazzaro, C / Leaci, P / Leavey, S / Lecoeuche, Y K / Lee, H M / Lee, H W / Lee, J / Lee, K / Lehmann, J / Lemaître, A / Leroy, N / Letendre, N / Levesque, C / Levin, Y / Leviton, J N / Leyde, K / Li, A K Y / Li, B / Li, J / Li, T G F / Li, X / Linde, F / Linker, S D / Linley, J N / Littenberg, T B / Liu, J / Liu, K / Liu, X / Llamas, F / Llorens-Monteagudo, M / Lo, R K L / Lockwood, A / London, L T / Longo, A / Lopez, D / Portilla, M Lopez / Lorenzini, M / Loriette, V / Lormand, M / Losurdo, G / Lott, T P / Lough, J D / Lousto, C O / Lovelace, G / Lucaccioni, J F / Lück, H / Lumaca, D / Lundgren, A P / Lynam, J E / Macas, R / MacInnis, M / Macleod, D M / MacMillan, I A O / Macquet, A / Hernandez, I Magaña / Magazzù, C / Magee, R M / Maggiore, R / Magnozzi, M / Mahesh, S / Majorana, E / Makarem, C / Maksimovic, I / Maliakal, S / Malik, A / Man, N / Mandic, V / Mangano, V / Mango, J L / Mansell, G L / Manske, M / Mantovani, M / Mapelli, M / Marchesoni, F / Marion, F / Mark, Z / Márka, S / Márka, Z / Markakis, C / Markosyan, A S / Markowitz, A / Maros, E / Marquina, A / Marsat, S / Martelli, F / Martin, I W / Martin, R M / Martinez, M / Martinez, V A / Martinez, V / Martinovic, K / Martynov, D V / Marx, E J / Masalehdan, H / Mason, K / Massera, E / Masserot, A / Massinger, T J / Masso-Reid, M / Mastrogiovanni, S / Matas, A / Mateu-Lucena, M / Matichard, F / Matiushechkina, M / Mavalvala, N / McCann, J J / McCarthy, R / McClelland, D E / McClincy, P K / McCormick, S / McCuller, L / McGhee, G I / McGuire, S C / McIsaac, C / McIver, J / McRae, T / McWilliams, S T / Meacher, D / Mehmet, M / Mehta, A K / Meijer, Q / Melatos, A / Melchor, D A / Mendell, G / Menendez-Vazquez, A / Menoni, C S / Mercer, R A / Mereni, L / Merfeld, K / Merilh, E L / Merritt, J D / Merzougui, M / Meshkov, S / Messenger, C / Messick, C / Meyers, P M / Meylahn, F / Mhaske, A / Miani, A / Miao, H / Michaloliakos, I / Michel, C / Middleton, H / Milano, L / Miller, A / Miller, A L / Miller, B / Millhouse, M / Mills, J C / Milotti, E / Minazzoli, O / Minenkov, Y / Mir, Ll M / Miravet-Tenés, M / Mishra, C / Mishra, T / Mistry, T / Mitra, S / Mitrofanov, V P / Mitselmakher, G / Mittleman, R / Mo, Geoffrey / Moguel, E / Mogushi, K / Mohapatra, S R P / Mohite, S R / Molina, I / Molina-Ruiz, M / Mondin, M / Montani, M / Moore, C J / Moraru, D / Morawski, F / More, A / Moreno, C / Moreno, G / Morisaki, S / Mours, B / Mow-Lowry, C M / Mozzon, S / Muciaccia, F / Mukherjee, Arunava / Mukherjee, D / Mukherjee, Soma / Mukherjee, Subroto / Mukherjee, Suvodip / Mukund, N / Mullavey, A / Munch, J / Muñiz, E A / Murray, P G / Musenich, R / Muusse, S / Nadji, S L / Nagar, A / Napolano, V / Nardecchia, I / Naticchioni, L / Nayak, B / Nayak, R K / Neil, B F / Neilson, J / Nelemans, G / Nelson, T J N / Nery, M / Neubauer, P / Neunzert, A / Ng, K Y / Ng, S W S / Nguyen, C / Nguyen, P / Nguyen, T / Nichols, S A / Nissanke, S / Nitoglia, E / Nocera, F / Norman, M / North, C / Nuttall, L K / Oberling, J / O'Brien, B D / O'Dell, J / Oelker, E / Oganesyan, G / Oh, J J / Oh, S H / Ohme, F / Ohta, H / Okada, M A / Olivetto, C / Oram, R / O'Reilly, B / Ormiston, R G / Ormsby, N D / Ortega, L F / O'Shaughnessy, R / O'Shea, E / Ossokine, S / Osthelder, C / Ottaway, D J / Overmier, H / Pace, A E / Pagano, G / Page, M A / Pagliaroli, G / Pai, A / Pai, S A / Palamos, J R / Palashov, O / Palomba, C / Pan, H / Panda, P K / Pang, P T H / Pankow, C / Pannarale, F / Pant, B C / Panther, F H / Paoletti, F / Paoli, A / Paolone, A / Park, H / Parker, W / Pascucci, D / Pasqualetti, A / Passaquieti, R / Passuello, D / Patel, M / Pathak, M / Patricelli, B / Patron, A S / Paul, S / Payne, E / Pedraza, M / Pegoraro, M / Pele, A / Penn, S / Perego, A / Pereira, A / Pereira, T / Perez, C J / Périgois, C / Perkins, C C / Perreca, A / Perriès, S / Petermann, J / Petterson, D / Pfeiffer, H P / Pham, K A / Phukon, K S / Piccinni, O J / Pichot, M / Piendibene, M / Piergiovanni, F / Pierini, L / Pierro, V / Pillant, G / Pillas, M / Pilo, F / Pinard, L / Pinto, I M / Pinto, M / Piotrzkowski, K / Pirello, M / Pitkin, M D / Placidi, E / Planas, L / Plastino, W / Pluchar, C / Poggiani, R / Polini, E / Pong, D Y T / Ponrathnam, S / Popolizio, P / Porter, E K / Poulton, R / Powell, J / Pracchia, M / Pradier, T / Prajapati, A K / Prasai, K / Prasanna, R / Pratten, G / Principe, M / Prodi, G A / Prokhorov, L / Prosposito, P / Prudenzi, L / Puecher, A / Punturo, M / Puosi, F / Puppo, P / Pürrer, M / Qi, H / Quetschke, V / Quitzow-James, R / Raab, F J / Raaijmakers, G / Radkins, H / Radulesco, N / Raffai, P / Rail, S X / Raja, S / Rajan, C / Ramirez, K E / Ramirez, T D / Ramos-Buades, A / Rana, J / Rapagnani, P / Rapol, U D / Ray, A / Raymond, V / Raza, N / Razzano, M / Read, J / Rees, L A / Regimbau, T / Rei, L / Reid, S / Reid, S W / Reitze, D H / Relton, P / Renzini, A / Rettegno, P / Rezac, M / Ricci, F / Richards, D / Richardson, J W / Richardson, L / Riemenschneider, G / Riles, K / Rinaldi, S / Rink, K / Rizzo, M / Robertson, N A / Robie, R / Robinet, F / Rocchi, A / Rodriguez, S / Rolland, L / Rollins, J G / Romanelli, M / Romano, R / Romel, C L / Romero-Rodríguez, A / Romero-Shaw, I M / Romie, J H / Ronchini, S / Rosa, L / Rose, C A / Rosińska, D / Ross, M P / Rowan, S / Rowlinson, S J / Roy, S / Roy, Santosh / Roy, Soumen / Rozza, D / Ruggi, P / Ryan, K / Sachdev, S / Sadecki, T / Sadiq, J / Sakellariadou, M / Salafia, O S / Salconi, L / Saleem, M / Salemi, F / Samajdar, A / Sanchez, E J / Sanchez, J H / Sanchez, L E / Sanchis-Gual, N / Sanders, J R / Sanuy, A / Saravanan, T R / Sarin, N / Sassolas, B / Satari, H / Sathyaprakash, B S / Sauter, O / Savage, R L / Sawant, D / Sawant, H L / Sayah, S / Schaetzl, D / Scheel, M / Scheuer, J / Schiworski, M / Schmidt, P / Schmidt, S / Schnabel, R / Schneewind, M / Schofield, R M S / Schönbeck, A / Schulte, B W / Schutz, B F / Schwartz, E / Scott, J / Scott, S M / Seglar-Arroyo, M / Sellers, D / Sengupta, A S / Sentenac, D / Seo, E G / Sequino, V / Sergeev, A / Setyawati, Y / Shaffer, T / Shahriar, M S / Shams, B / Sharma, A / Sharma, P / Shawhan, P / Shcheblanov, N S / Shikauchi, M / Shoemaker, D H / Shoemaker, D M / ShyamSundar, S / Sieniawska, M / Sigg, D / Singer, L P / Singh, D / Singh, N / Singha, A / Sintes, A M / Sipala, V / Skliris, V / Slagmolen, B J J / Slaven-Blair, T J / Smetana, J / Smith, J R / Smith, R J E / Soldateschi, J / Somala, S N / Son, E J / Soni, K / Soni, S / Sordini, V / Sorrentino, F / Sorrentino, N / Soulard, R / Souradeep, T / Sowell, E / Spagnuolo, V / Spencer, A P / Spera, M / Srinivasan, R / Srivastava, A K / Srivastava, V / Staats, K / Stachie, C / Steer, D A / Steinlechner, J / Steinlechner, S / Stevenson, S / Stops, D J / Stover, M / Strain, K A / Strang, L C / Stratta, G / Strunk, A / Sturani, R / Stuver, A L / Sudhagar, S / Sudhir, V / Suh, H G / Summerscales, T Z / Sun, H / Sun, L / Sunil, S / Sur, A / Suresh, J / Sutton, P J / Swinkels, B L / Szczepańczyk, M J / Szewczyk, P / Tacca, M / Tait, S C / Talbot, C J / Talbot, C / Tanasijczuk, A J / Tanner, D B / Tao, D / Tao, L / Martín, E N Tapia San / Taranto, C / Tasson, J D / Tenorio, R / Terhune, J E / Terkowski, L / Thirugnanasambandam, M P / Thomas, M / Thomas, P / Thompson, J E / Thondapu, S R / Thorne, K A / Thrane, E / Tiwari, Shubhanshu / Tiwari, Srishti / Tiwari, V / Toivonen, A M / Toland, K / Tolley, A E / Tonelli, M / Torres-Forné, A / Torrie, C I / E Melo, I Tosta / Töyrä, D / Trapananti, A / Travasso, F / Traylor, G / Trevor, M / Tringali, M C / Tripathee, A / Troiano, L / Trovato, A / Trozzo, L / Trudeau, R J / Tsai, D S / Tsai, D / Tsang, K W / Tse, M / Tso, R / Tsukada, L / Tsuna, D / Tsutsui, T / Turbang, K / Turconi, M / Ubhi, A S / Udall, R P / Ueno, K / Unnikrishnan, C S / Urban, A L / Utina, A / Vahlbruch, H / Vajente, G / Vajpeyi, A / Valdes, G / Valentini, M / Valsan, V / van Bakel, N / van Beuzekom, M / van den Brand, J F J / Van Den Broeck, C / Vander-Hyde, D C / van der Schaaf, L / van Heijningen, J V / Vanosky, J / van Remortel, N / Vardaro, M / Vargas, A F / Varma, V / Vasúth, M / Vecchio, A / Vedovato, G / Veitch, J / Veitch, P J / Venneberg, J / Venugopalan, G / Verkindt, D / Verma, P / Verma, Y / Veske, D / Vetrano, F / Viceré, A / Vidyant, S / Viets, A D / Vijaykumar, A / Villa-Ortega, V / Vinet, J-Y / Virtuoso, A / Vitale, S / Vo, T / Vocca, H / von Reis, E R G / von Wrangel, J S A / Vorvick, C / Vyatchanin, S P / Wade, L E / Wade, M / Wagner, K J / Walet, R C / Walker, M / Wallace, G S / Wallace, L / Walsh, S / Wang, J Z / Wang, W H / Ward, R L / Warner, J / Was, M / Washington, N Y / Watchi, J / Weaver, B / Webster, S A / Weinert, M / Weinstein, A J / Weiss, R / Weller, C M / Wellmann, F / Wen, L / Weßels, P / Wette, K / Whelan, J T / White, D D / Whiting, B F / Whittle, C / Wilken, D / Williams, D / Williams, M J / Williamson, A R / Willis, J L / Willke, B / Wilson, D J / Winkler, W / Wipf, C C / Wlodarczyk, T / Woan, G / Woehler, J / Wofford, J K / Wong, I C F / Wu, D S / Wysocki, D M / Xiao, L / Yamamoto, H / Yang, F W / Yang, L / Yang, Yang / Yang, Z / Yap, M J / Yeeles, D W / Yelikar, A B / Ying, M / Yoo, J / Yu, Hang / Yu, Haocun / Zadrożny, A / Zanolin, M / Zelenova, T / Zendri, J-P / Zevin, M / Zhang, J / Zhang, L / Zhang, T / Zhang, Y / Zhao, C / Zhao, G / Zhao, Yue / Zhou, R / Zhou, Z / Zhu, X J / Zimmerman, A B / Zucker, M E / Zweizig, J / Jeong, Donghui / Shandera, Sarah

    Physical review letters

    2022  Volume 129, Issue 6, Page(s) 61104

    Abstract: We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2  M_{⊙} and 1.0  M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend ...

    Abstract We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2  M_{⊙} and 1.0  M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q≥0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14  yr^{-1}. This implies an upper limit on the merger rate of subsolar binaries in the range [220-24200]  Gpc^{-3} yr^{-1}, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2  M_{⊙}<m_{PBH}<1.0  M_{⊙} is f_{PBH}≡Ω_{PBH}/Ω_{DM}≲6%. This improves existing constraints on primordial black hole abundance by a factor of ∼3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at M_{min}=1  M_{⊙}, where f_{DBH}≡Ω_{DBH}/Ω_{DM}≲0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses.<br />
    Language English
    Publishing date 2022-08-28
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.129.061104
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top