LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Co-cultivation of primary porcine RPE cells and neuroretina induces inflammation: a potential inflammatory AMD-model.

    Fietz, Agnes / Schnichels, Sven / Hurst, José

    Scientific reports

    2023  Volume 13, Issue 1, Page(s) 19345

    Abstract: One common aspect in the pathology of many retinal diseases like age-related macular degeneration (AMD) is the death of retinal pigment epithelium (RPE) cells. RPE cells are essential for photoreceptor survival as they recycle and remove compounds of the ...

    Abstract One common aspect in the pathology of many retinal diseases like age-related macular degeneration (AMD) is the death of retinal pigment epithelium (RPE) cells. RPE cells are essential for photoreceptor survival as they recycle and remove compounds of the visual cycle and secrete protective cytokines. Studying RPE cells is crucial to improve our understanding of retinal pathologies, yet only a few retinal ex vivo models include them or do so only indirectly. Besides the positive effects in indirect co-cultivation models, also a slight inflammation was observed. In this study we developed an ex vivo model consisting of a primary porcine RPE monolayer directly co-cultured with porcine retinal organ cultures, to investigate and simulate inflammatory retinal diseases, such as (dry) AMD. The direct co-cultivation resulted in immune reactivity (enhanced expression of pro-inflammatory cytokines e.g., IL-1β, IL-6, IL-8) and cell death. These effects were evaluated for the retinal explant as well as for the RPE-monolayer to further understand the complex interactions between these two compartments. Taken together, this ex vivo model can be used to study inflammatory retinal diseases like AMD as well as the rejection observed after RPE-transplantation.
    MeSH term(s) Swine ; Animals ; Retinal Pigment Epithelium/metabolism ; Macular Degeneration/pathology ; Inflammation/pathology ; Cytokines/metabolism ; Retinal Diseases/pathology
    Chemical Substances Cytokines
    Language English
    Publishing date 2023-11-07
    Publishing country England
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 2615211-3
    ISSN 2045-2322 ; 2045-2322
    ISSN (online) 2045-2322
    ISSN 2045-2322
    DOI 10.1038/s41598-023-46029-8
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Blue Light Damage and p53: Unravelling the Role of p53 in Oxidative-Stress-Induced Retinal Apoptosis.

    Fietz, Agnes / Corsi, Francesca / Hurst, José / Schnichels, Sven

    Antioxidants (Basel, Switzerland)

    2023  Volume 12, Issue 12

    Abstract: In the digital age, the widespread presence of electronic devices has exposed humans to an exceptional amount of blue light (BL) emitted from screens, LEDs, and other sources. Studies have shown that prolonged exposure to BL could have harmful effects on ...

    Abstract In the digital age, the widespread presence of electronic devices has exposed humans to an exceptional amount of blue light (BL) emitted from screens, LEDs, and other sources. Studies have shown that prolonged exposure to BL could have harmful effects on the visual system and circadian rhythm regulation. BL is known to induce oxidative stress, leading to DNA damage. Emerging research indicates that BL may also induce cell death pathways that involve the tumor-suppressor protein p53. Activated p53 acts as a transcription factor to regulate the expression of genes involved in cell cycle arrest, DNA repair, and apoptosis. This study aimed to explore the implication of p53 in BL-caused retinal damage, shedding light on the potential mechanisms of oxidative-stress-induced retinal diseases. BL-exposed porcine retinal cultures demonstrated increased p53- and caspase-mediated apoptosis, depending on exposure duration. Direct inhibition of p53 via pifithrin α resulted in the prevention of retinal cell death. These findings raise concerns about the long-term consequences of the current daily BL exposure and its potential involvement in various pathological conditions, including oxidative-stress-based retinal diseases like age-related macular degeneration. In addition, this study paves the way for the development of novel therapeutic approaches for oxidative-stress-based retinal diseases.
    Language English
    Publishing date 2023-12-04
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2704216-9
    ISSN 2076-3921
    ISSN 2076-3921
    DOI 10.3390/antiox12122072
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Establishment of a primary porcine retinal pigment epithelium monolayer to complement retinal ex vivo cultures.

    Fietz, Agnes / Hurst, Jose / Joachim, Stephanie C / Schnichels, Sven

    STAR protocols

    2023  Volume 4, Issue 3, Page(s) 102443

    Abstract: Impaired function of the retinal pigment epithelium (RPE) resembles a hallmark in many retinal diseases; thus, co-cultivation models with RPE and retinal explants are useful to investigate these. Here, we present an easy-to-handle direct co-cultivation ... ...

    Abstract Impaired function of the retinal pigment epithelium (RPE) resembles a hallmark in many retinal diseases; thus, co-cultivation models with RPE and retinal explants are useful to investigate these. Here, we present an easy-to-handle direct co-cultivation protocol, containing a functional, primary RPE monolayer and retinal explants. We describe in detail steps for establishing the monolayer and the direct co-cultivation. Techniques, which allow users to investigate the integrity and functionality of the RPE monolayer, are presented and the co-cultivation was tested under stress conditions.
    MeSH term(s) Swine ; Animals ; Retinal Pigment Epithelium ; Retina
    Language English
    Publishing date 2023-07-16
    Publishing country United States
    Document type Journal Article
    ISSN 2666-1667
    ISSN (online) 2666-1667
    DOI 10.1016/j.xpro.2023.102443
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article ; Online: Out of the Shadow: Blue Light Exposure Induces Apoptosis in Müller Cells.

    Fietz, Agnes / Hurst, José / Schnichels, Sven

    International journal of molecular sciences

    2022  Volume 23, Issue 23

    Abstract: Awareness toward the risks of blue light (BL) exposure is rising due to increased use of BL-enriched LEDs in displays. Short-wave BL (400-500 nm) has a high photochemical energy, leading to the enhanced production of reactive oxygen species (ROS). BL ... ...

    Abstract Awareness toward the risks of blue light (BL) exposure is rising due to increased use of BL-enriched LEDs in displays. Short-wave BL (400-500 nm) has a high photochemical energy, leading to the enhanced production of reactive oxygen species (ROS). BL potentially plays a role in causing dry eye, cataracts, and age-related macular degeneration (AMD). The effect of BL on retinal pigment epithelium cells (RPEs) or photoreceptors has been extensively investigated. In contrast, only a few studies have investigated the effects of BL exposure on Müller cells (MCs). This is mainly due to their lack of photosensitive elements and the common assumption that their reaction to stress is only secondary in disease development. However, MCs perform important supportive, secretory, and immune functions in the retina, making them essential for retinal survival. Increased oxidative stress is a key player in many retinal diseases such as AMD or glaucoma. We hypothesize that increased oxidative stress can also affect MCs. Thus, we simulated oxidative stress levels by exposing primary porcine MCs and human MIO-M1 cells to BL. To confirm the wavelength-specificity, the cells were further exposed to red (RL), purple (PL), and white light (WL). BL and WL exposure increased ROS levels, but only BL exposure led to apoptosis in primary MCs. Thus, BL accounted for the harmful part of WL exposure. When cells were simultaneously exposed to BL and RL (i.e., PL), cell damage due to BL could be partly prevented, as could the inhibition of p53, demonstrating the protective effect of RL and p53 dependency. In contrast, BL hardly induced apoptosis in MIO-M1 cells, which is likely due to the immortalization of the cells. Therefore, enhanced oxidative stress levels can significantly harm MC function, probably leading to decreased retinal survival and, thus, further enhancing the progression of retinal diseases. Preventing the cell death of these essential retinal cells represents a promising therapy option to enhance retinal survival.
    Language English
    Publishing date 2022-11-22
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2019364-6
    ISSN 1422-0067 ; 1422-0067 ; 1661-6596
    ISSN (online) 1422-0067
    ISSN 1422-0067 ; 1661-6596
    DOI 10.3390/ijms232314540
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article: Organ Cultures for Retinal Diseases.

    Hurst, José / Fietz, Agnes / Tsai, Teresa / Joachim, Stephanie C / Schnichels, Sven

    Frontiers in neuroscience

    2020  Volume 14, Page(s) 583392

    Abstract: The successful development of novel therapies is closely linked with understanding the underlying pathomechanisms of a disease. To do so, model systems that reflect human diseases and allow for the evaluation of new therapeutic approaches are needed. Yet, ...

    Abstract The successful development of novel therapies is closely linked with understanding the underlying pathomechanisms of a disease. To do so, model systems that reflect human diseases and allow for the evaluation of new therapeutic approaches are needed. Yet, preclinical animal studies often have limited success in predicting human physiology, pathology, and therapeutic responses. Moreover, animal testing is facing increasing ethical and bureaucratic hurdles, while human cell cultures are limited in their ability to represent
    Language English
    Publishing date 2020-11-25
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2411902-7
    ISSN 1662-453X ; 1662-4548
    ISSN (online) 1662-453X
    ISSN 1662-4548
    DOI 10.3389/fnins.2020.583392
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top