LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson’s Disease in C57BL/6 Mice

    Isaac Deng / Frances Corrigan / Sanjay Garg / Xin-Fu Zhou / Larisa Bobrovskaya

    International Journal of Molecular Sciences, Vol 22, Iss 7380, p

    2021  Volume 7380

    Abstract: Parkinson’s disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, ...

    Abstract Parkinson’s disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model ...
    Keywords Parkinson’s disease ; intrastriatal ; inflammation ; olfactory bulb ; colon ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: NK1 antagonists attenuate tau phosphorylation after blast and repeated concussive injury

    Frances Corrigan / Ibolja Cernak / Kelly McAteer / Sarah C. Hellewell / Jeffrey V. Rosenfeld / Renée J. Turner / Robert Vink

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 9

    Abstract: Abstract Exposure to repeated concussive traumatic brain injury (TBI) and to blast-induced TBI has been associated with the potential development of the neurodegenerative condition known as chronic traumatic encephalopathy (CTE). CTE is characterized by ... ...

    Abstract Abstract Exposure to repeated concussive traumatic brain injury (TBI) and to blast-induced TBI has been associated with the potential development of the neurodegenerative condition known as chronic traumatic encephalopathy (CTE). CTE is characterized by the accumulation of hyperphosphorylated tau protein, with the resultant tau tangles thought to initiate the cognitive and behavioral manifestations that appear as the condition progresses. However, the mechanisms linking concussive and blast TBI with tau hyperphosphorylation are unknown. Here we show that single moderate TBI, repeated concussive TBI and blast-induced mild TBI all result in hyperphosphorylation of tau via a substance P mediated mechanism. Post-injury administration of a substance P, NK1 receptor antagonist attenuated the injury-induced phosphorylation of tau by modulating the activity of several key kinases including Akt, ERK1/2 and JNK, and was associated with improvement in neurological outcome. We also demonstrate that inhibition of the TRPV1 mechanoreceptor, which is linked to substance P release, attenuated injury-associated tau hyperphosphorylation, but only when it was administered prior to injury. Our results demonstrate that TBI-mediated stimulation of brain mechanoreceptors is associated with substance P release and consequent tau hyperphosphorylation, with administration of an NK1 receptor antagonist attenuating tau phosphorylation and associated neurological deficits. NK1 antagonists may thus represent a pharmacological approach to attenuate the potential development of CTE following concussive and blast TBI.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury

    Abdalla Z Mohamed / Frances Corrigan / Lyndsey E. Collins-Praino / Stephanie L. Plummer / Neha Soni / Fatima A. Nasrallah

    NeuroImage: Clinical, Vol 25, Iss , Pp - (2020)

    2020  

    Abstract: Background: Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and ...

    Abstract Background: Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and mean diffusivity (MD) within prominent white matter tracts, but few have linked these to changes within the grey matter with confirmation via histological assessment. This is especially important as alterations in the grey matter may be predictive of long-term functional deficits. Methods: A total of 33 male Sprague Dawley rats underwent severe closed-head TBI. Eight animals underwent tensor-based morphometry (TBM) and DTI at baseline (pre-TBI), 24 hours (24 h), 7, 14, and 30 days post-TBI. Immunohistochemical analysis for the detection of ionised calcium-binding adaptor molecule 1 (IBA1) to assess microglia number and percentage of activated cells, β-amyloid precursor protein (APP) as a marker of axonal injury, and myelin basic protein (MBP) to investigate myelination was performed at each time-point. Results: DTI showed significant alterations in FA and RD in numerous white matter tracts including the corpus callosum, internal and external capsule, and optic tract and in the grey-matter in the cortex, thalamus, and hippocampus, with the most significant effects observed at 14 D post-TBI. TBM confirmed volumetric changes within the hippocampus and thalamus. Changes in DTI were in line with significant axonal injury noted at 24 h post-injury via immunohistochemical analysis of APP, with widespread microglial activation seen within prominent white matter tracts and the grey matter, which persisted to 30 D within the hippocampus and thalamus. Microstructural alterations in MBP+ve fibres were also noted within the hippocampus and thalamus, as well as the cortex. Conclusion: This study confirms the widespread effects of diffuse TBI on white matter tracts which could be detected via DTI and extends these findings to key grey matter regions, with a comprehensive ...
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Neurology. Diseases of the nervous system ; RC346-429
    Subject code 616
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Short and Long Term Behavioral and Pathological Changes in a Novel Rodent Model of Repetitive Mild Traumatic Brain Injury.

    Kelly M McAteer / Frances Corrigan / Emma Thornton / Renee Jade Turner / Robert Vink

    PLoS ONE, Vol 11, Iss 8, p e

    2016  Volume 0160220

    Abstract: A history of concussion, particularly repeated injury, has been linked to an increased risk for the development of neurodegenerative diseases, particularly chronic traumatic encephalopathy (CTE). CTE is characterized by abnormal accumulation of ... ...

    Abstract A history of concussion, particularly repeated injury, has been linked to an increased risk for the development of neurodegenerative diseases, particularly chronic traumatic encephalopathy (CTE). CTE is characterized by abnormal accumulation of hyperphosphorylated tau and deficits in learning and memory. As yet the mechanisms associated with the development of CTE are unknown. Accordingly, the aim of the current study was to develop and characterize a novel model of repetitive mTBI that accurately reproduces the key short and long-term functional and histopathological features seen clinically. Forty male Sprague-Dawley rats were randomly assigned to receive 0, 1 or 3x mTBI spaced five days apart using a modified version of the Marmarou impact-acceleration diffuse-TBI model to deliver 110G of linear force. Functional outcomes were assessed six and twelve weeks post-injury, with histopathology assessed twenty-four hours and twelve weeks post-injury. Repetitive mTBI resulted in mild spatial and recognition memory deficits as reflected by increased escape latency on the Barnes maze and decreased time spent in the novel arm of the Y maze. There was a trend towards increased anxiety-like behavior, with decreased time spent in the inner portion of the open field. At 24 hours and 12 weeks post injury, repetitive mTBI animals showed increased tau phosphorylation and microglial activation within the cortex. Increases in APP immunoreactivity were observed in repetitive mTBI animals at 12 weeks indicating long-term changes in axonal integrity. This novel model of repetitive mTBI with its persistent cognitive deficits, neuroinflammation, axonal injury and tau hyperphosphorylation, thus represents a clinically relevant experimental approach to further explore the underlying pathogenesis of CTE.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury.

    Stephanie L Plummer / Frances Corrigan / Emma Thornton / Joshua A Woenig / Robert Vink / Roberto Cappai / Corinna Van Den Heuvel

    PLoS ONE, Vol 13, Iss 1, p e

    2018  Volume 0190449

    Abstract: Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of ... ...

    Abstract Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of opportunity to limit the consequences with a timely treatment. Recently, the amyloid precursor protein (APP) and its derivative APP96-110 have shown encouraging neuroprotective activity following TBI following an intracerebroventricular administration. Nevertheless, its broader clinical utility would be enhanced by an intravenous (IV) administration. This study assessed the efficacy of IV APP96-110, where a dose-response for a single dose of 0.005mg/kg- 0.5mg/kg APP96-110 at either 30 minutes or 5 hours following moderate-severe diffuse impact-acceleration injury was performed. Male Sprague-Dawley rats were assessed daily for 3 or 7 days on the rotarod to examine motor outcome, with a separate cohort of animals utilised for immunohistochemistry analysis 3 days post-TBI to assess axonal injury and neuroinflammation. Animals treated with 0.05mg/kg or 0.5mg/kg APP96-110 after 30 minutes demonstrated significant improvements in motor outcome. This was accompanied by a reduction in axonal injury and neuroinflammation in the corpus callosum at 3 days post-TBI, whereas 0.005mg/kg had no effect. In contrast, treatment with 0.005m/kg or 0.5mg/kg APP96-110 at 5 hours post-TBI demonstrated significant improvements in motor outcome over 3 days, which was accompanied by a reduction in axonal injury in the corpus callosum. This demonstrates that APP96-110 remains efficacious for up to 5 hours post-TBI when administered IV, and supports its development as a novel therapeutic compound following TBI.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top