LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Heterogeneity of network and coding states in mouse CA1 place cells

    Matteo Guardamagna / Federico Stella / Francesco P. Battaglia

    Cell Reports, Vol 42, Iss 2, Pp 112022- (2023)

    2023  

    Abstract: Summary: Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from past to future. Phase precession is the ...

    Abstract Summary: Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from past to future. Phase precession is the correlation between theta firing phase and animal position. Here, we reconsider these temporal processes in CA1 and the computational principles that they are thought to obey. We find stronger heterogeneity than previously described: we identify cells that do not phase precess but reliably express theta sequences. Other cells phase precess only when medium gamma (linked to entorhinal inputs) is strongest. The same cells express more sequences, but not precession, when slow gamma (linked to CA3 inputs) dominates. Moreover, sequences occur independently in distinct cell groups. Our results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences, suggesting a role for CA1 cells in multiplexing diverse computational processes.
    Keywords CP: Neuroscience ; Biology (General) ; QH301-705.5
    Subject code 612
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Heterogeneity of network and coding states in mouse CA1 place cells

    Matteo Guardamagna / Federico Stella / Francesco P. Battaglia

    Cell Reports, Vol 42, Iss 6, Pp 112683- (2023)

    2023  

    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Learning differentially shapes prefrontal and hippocampal activity during classical conditioning

    Jan L Klee / Bryan C Souza / Francesco P Battaglia

    eLife, Vol

    2021  Volume 10

    Abstract: The ability to use sensory cues to inform goal-directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the ... ...

    Abstract The ability to use sensory cues to inform goal-directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning-dependent changes at the single-cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWRs) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.
    Keywords conditioning ; sharp-wave ripples ; CA1 ; PFC ; electrophysiology ; reward ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Subject code 150
    Language English
    Publishing date 2021-10-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure.

    Lukas Grossberger / Francesco P Battaglia / Martin Vinck

    PLoS Computational Biology, Vol 14, Iss 7, p e

    2018  Volume 1006283

    Abstract: Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. ... ...

    Abstract Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity between two ensemble spike patterns by determining the minimum transport cost of transforming their corresponding normalized cross-correlation matrices into each other (SPOTDis). Then, it performs density-based clustering based on the resulting inter-pattern dissimilarity matrix. SPOTDisClust does not require binning and can detect complex patterns (beyond sequential activation) even when high levels of out-of-pattern "noise" spiking are present. Our method handles efficiently the additional information from increasingly large neuronal ensembles and can detect a number of patterns that far exceeds the number of recorded neurons. In an application to neural ensemble data from macaque monkey V1 cortex, SPOTDisClust can identify different moving stimulus directions on the sole basis of temporal spiking patterns.
    Keywords Biology (General) ; QH301-705.5
    Subject code 612 ; 006
    Language English
    Publishing date 2018-07-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Impaired hippocampal representation of place in the Fmr1-knockout mouse model of fragile X syndrome

    Tara Arbab / Cyriel M. A. Pennartz / Francesco P. Battaglia

    Scientific Reports, Vol 8, Iss 1, Pp 1-

    2018  Volume 9

    Abstract: Abstract Fragile X syndrome (FXS) is an X-chromosome linked intellectual disability and the most common known inherited single gene cause of autism spectrum disorder (ASD). Building upon demonstrated deficits in neuronal plasticity and spatial memory in ... ...

    Abstract Abstract Fragile X syndrome (FXS) is an X-chromosome linked intellectual disability and the most common known inherited single gene cause of autism spectrum disorder (ASD). Building upon demonstrated deficits in neuronal plasticity and spatial memory in FXS, we investigated how spatial information processing is affected in vivo in an FXS mouse model (Fmr1-KO). Healthy hippocampal neurons (so-called place cells) exhibit place-related activity during spatial exploration, and their firing fields tend to remain stable over time. In contrast, we find impaired stability and reduced specificity of Fmr1-KO spatial representations. This is a potential biomarker for the cognitive dysfunction observed in FXS, informative on the ability to integrate sensory information into an abstract representation and successfully retain this conceptual memory. Our results provide key insight into the biological mechanisms underlying cognitive disabilities in FXS and ASD, paving the way for a targeted approach to remedy these.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2018-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: The Yin and Yang of Memory Consolidation

    Lisa Genzel / Janine I Rossato / Justin Jacobse / Roddy M Grieves / Patrick A Spooner / Francesco P Battaglia / Guillen Fernández / Richard G M Morris

    PLoS Biology, Vol 15, Iss 1, p e

    Hippocampal and Neocortical.

    2017  Volume 2000531

    Abstract: While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated ... ...

    Abstract While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations-context preexposure or interference during memory retrieval-differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top