LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Effective mathematical modelling of health passes during a pandemic

    Stefan Hohenegger / Giacomo Cacciapaglia / Francesco Sannino

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 13

    Abstract: Abstract We study the impact on the epidemiological dynamics of a class of restrictive measures that are aimed at reducing the number of contacts of individuals who have a higher risk of being infected with a transmittable disease. Such measures are ... ...

    Abstract Abstract We study the impact on the epidemiological dynamics of a class of restrictive measures that are aimed at reducing the number of contacts of individuals who have a higher risk of being infected with a transmittable disease. Such measures are currently either implemented or at least discussed in numerous countries worldwide to ward off a potential new wave of COVID-19. They come in the form of Health Passes (HP), which grant full access to public life only to individuals with a certificate that proves that they have either been fully vaccinated, have recovered from a previous infection or have recently tested negative to SARS-Cov-2. We develop both a compartmental model as well as an epidemic Renormalisation Group approach, which is capable of describing the dynamics over a longer period of time, notably an entire epidemiological wave. Introducing different versions of HPs in this model, we are capable of providing quantitative estimates on the effectiveness of the underlying measures as a function of the fraction of the population that is vaccinated and the vaccination rate. We apply our models to the latest COVID-19 wave in several European countries, notably Germany and Austria, which validate our theoretical findings.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Interplay of social distancing and border restrictions for pandemics via the epidemic renormalisation group framework

    Giacomo Cacciapaglia / Francesco Sannino

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 10

    Abstract: Abstract One of the biggest threats to humanity are pandemics. In our global society they can rage around the world with an immense toll in terms of human, economic and social impact. Forecasting the spreading of a pandemic is, therefore, paramount in ... ...

    Abstract Abstract One of the biggest threats to humanity are pandemics. In our global society they can rage around the world with an immense toll in terms of human, economic and social impact. Forecasting the spreading of a pandemic is, therefore, paramount in helping governments to enforce a number of social and economic measures, apt at curbing the pandemic and dealing with its aftermath. We demonstrate that the epidemic renormalisation group approach to pandemics provides an effective and simple way to investigate the dynamics of disease transmission and spreading across different regions of the world. The framework also allows for reliable projections on the impact of travel limitations and social distancing measures on global epidemic spread. We test and calibrate it on reported COVID-19 cases while unveiling the mechanism that governs the delay in the relative peaks of newly infected cases among different regions of the globe. We discover that social distancing measures are more effective than travel limitations across borders in delaying the epidemic peak. We further provide the link to compartmental models such as the time-honoured SIR-like models. We also show how to generalise the framework to account for the interactions across several regions of the world, replacing or complementing large scale simulations.
    Keywords Medicine ; R ; Science ; Q ; covid19
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Mining Google and Apple mobility data

    Corentin Cot / Giacomo Cacciapaglia / Francesco Sannino

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    temporal anatomy for COVID-19 social distancing

    2021  Volume 8

    Abstract: Abstract We employ the Google and Apple mobility data to identify, quantify and classify different degrees of social distancing and characterise their imprint on the first wave of the COVID-19 pandemic in Europe and in the United States. We identify the ... ...

    Abstract Abstract We employ the Google and Apple mobility data to identify, quantify and classify different degrees of social distancing and characterise their imprint on the first wave of the COVID-19 pandemic in Europe and in the United States. We identify the period of enacted social distancing via Google and Apple data, independently from the political decisions. Our analysis allows us to classify different shades of social distancing measures for the first wave of the pandemic. We observe a strong decrease in the infection rate occurring two to five weeks after the onset of mobility reduction. A universal time scale emerges, after which social distancing shows its impact. We further provide an actual measure of the impact of social distancing for each region, showing that the effect amounts to a reduction by 20–40% in the infection rate in Europe and 30–70% in the US.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Multiwave pandemic dynamics explained

    Giacomo Cacciapaglia / Corentin Cot / Francesco Sannino

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    how to tame the next wave of infectious diseases

    2021  Volume 8

    Abstract: Abstract Pandemics, like the 1918 Spanish Influenza and COVID-19, spread through regions of the World in subsequent waves. Here we propose a consistent picture of the wave pattern based on the epidemic Renormalisation Group (eRG) framework, which is ... ...

    Abstract Abstract Pandemics, like the 1918 Spanish Influenza and COVID-19, spread through regions of the World in subsequent waves. Here we propose a consistent picture of the wave pattern based on the epidemic Renormalisation Group (eRG) framework, which is guided by the global symmetries of the system under time rescaling. We show that the rate of spreading of the disease can be interpreted as a time-dilation symmetry, while the final stage of an epidemic episode corresponds to reaching a time scale-invariant state. We find that the endemic period between two waves is a sign of instability in the system, associated to near-breaking of the time scale-invariance. This phenomenon can be described in terms of an eRG model featuring complex fixed points. Our results demonstrate that the key to control the arrival of the next wave of a pandemic is in the strolling period in between waves, i.e. when the number of infections grows linearly. Thus, limiting the virus diffusion in this period is the most effective way to prevent or delay the arrival of the next wave. In this work we establish a new guiding principle for the formulation of mid-term governmental strategies to curb pandemics and avoid recurrent waves of infections, deleterious in terms of human life loss and economic damage.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Renormalization Group Approach to Pandemics

    Michele Della Morte / Domenico Orlando / Francesco Sannino

    Frontiers in Physics, Vol

    The COVID-19 Case

    2020  Volume 8

    Abstract: We investigate the spreading dynamics of infected cases for SARS-2013 and COVID-19 epidemics for different regions of the world, in terms of the renormalization group language. The latter provides an alternative way to describe the underlying dynamics of ...

    Abstract We investigate the spreading dynamics of infected cases for SARS-2013 and COVID-19 epidemics for different regions of the world, in terms of the renormalization group language. The latter provides an alternative way to describe the underlying dynamics of disease spread. This allows us to introduce important quantities, for a given disease, such as the slope of the beta function at fixed points and the time scale of the epidemic spread inflection point. We discover that for COVID-19 the epidemic slope is of order one inverse week and the inflection point occurs roughly 4 weeks after the outbreak. We use these results to attempt long term estimates for the epidemic evolution in several regions of the world. The accuracy of the results vary depending on the epidemic stage for each region. We also provide a webpage where we daily update our analyses.
    Keywords COVID-19 ; renormalization group ; social physics ; dynamics ; epidemics ; Physics ; QC1-999 ; covid19
    Subject code 612
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Second wave COVID-19 pandemics in Europe

    Giacomo Cacciapaglia / Corentin Cot / Francesco Sannino

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    a temporal playbook

    2020  Volume 8

    Abstract: Abstract A second wave pandemic constitutes an imminent threat to society, with a potentially immense toll in terms of human lives and a devastating economic impact. We employ the epidemic Renormalisation Group (eRG) approach to pandemics, together with ... ...

    Abstract Abstract A second wave pandemic constitutes an imminent threat to society, with a potentially immense toll in terms of human lives and a devastating economic impact. We employ the epidemic Renormalisation Group (eRG) approach to pandemics, together with the first wave data for COVID-19, to efficiently simulate the dynamics of disease transmission and spreading across different European countries. The framework allows us to model, not only inter and extra European border control effects, but also the impact of social distancing for each country. We perform statistical analyses averaging on different level of human interaction across Europe and with the rest of the World. Our results are neatly summarised as an animation reporting the time evolution of the first and second waves of the European COVID-19 pandemic. Our temporal playbook of the second wave pandemic can be used by governments, financial markets, the industries and individual citizens, to efficiently time, prepare and implement local and global measures.
    Keywords Medicine ; R ; Science ; Q ; covid19
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Impact of US vaccination strategy on COVID-19 wave dynamics

    Corentin Cot / Giacomo Cacciapaglia / Anna Sigridur Islind / María Óskarsdóttir / Francesco Sannino

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Abstract We employ the epidemic Renormalization Group (eRG) framework to understand, reproduce and predict the COVID-19 pandemic diffusion across the US. The human mobility across different geographical US divisions is modelled via open source flight ... ...

    Abstract Abstract We employ the epidemic Renormalization Group (eRG) framework to understand, reproduce and predict the COVID-19 pandemic diffusion across the US. The human mobility across different geographical US divisions is modelled via open source flight data alongside the impact of social distancing for each such division. We analyse the impact of the vaccination strategy on the current pandemic wave dynamics in the US. We observe that the ongoing vaccination campaign will not impact the current pandemic wave and therefore strict social distancing measures must still be enacted. To curb the current and the next waves our results indisputably show that vaccinations alone are not enough and strict social distancing measures are required until sufficient immunity is achieved. Our results are essential for a successful vaccination strategy in the US.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19

    Adele de Hoffer / Shahram Vatani / Corentin Cot / Giacomo Cacciapaglia / Maria Luisa Chiusano / Andrea Cimarelli / Francesco Conventi / Antonio Giannini / Stefan Hohenegger / Francesco Sannino

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 14

    Abstract: Abstract Never before such a vast amount of data, including genome sequencing, has been collected for any viral pandemic than for the current case of COVID-19. This offers the possibility to trace the virus evolution and to assess the role mutations play ...

    Abstract Abstract Never before such a vast amount of data, including genome sequencing, has been collected for any viral pandemic than for the current case of COVID-19. This offers the possibility to trace the virus evolution and to assess the role mutations play in its spread within the population, in real time. To this end, we focused on the Spike protein for its central role in mediating viral outbreak and replication in host cells. Employing the Levenshtein distance on the Spike protein sequences, we designed a machine learning algorithm yielding a temporal clustering of the available dataset. From this, we were able to identify and define emerging persistent variants that are in agreement with known evidences. Our novel algorithm allowed us to define persistent variants as chains that remain stable over time and to highlight emerging variants of epidemiological interest as branching events that occur over time. Hence, we determined the relationship and temporal connection between variants of interest and the ensuing passage to dominance of the current variants of concern. Remarkably, the analysis and the relevant tools introduced in our work serve as an early warning for the emergence of new persistent variants once the associated cluster reaches 1% of the time-binned sequence data. We validated our approach and its effectiveness on the onset of the Alpha variant of concern. We further predict that the recently identified lineage AY.4.2 (‘Delta plus’) is causing a new emerging variant. Comparing our findings with the epidemiological data we demonstrated that each new wave is dominated by a new emerging variant, thus confirming the hypothesis of the existence of a strong correlation between the birth of variants and the pandemic multi-wave temporal pattern. The above allows us to introduce the epidemiology of variants that we described via the Mutation epidemiological Renormalisation Group framework.
    Keywords Medicine ; R ; Science ; Q
    Subject code 612
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top