LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin

    Karin Kettisen / Michael Brad Strader / Francine Wood / Abdu I. Alayash / Leif Bülow

    Redox Biology, Vol 19, Iss , Pp 218-

    2018  Volume 225

    Abstract: Redox active cysteine residues including βCys93 are part of hemoglobin's “oxidation hotspot”. Irreversible oxidation of βCys93 ultimately leads to the collapse of the hemoglobin structure and release of heme. Human fetal hemoglobin (HbF), similarly to ... ...

    Abstract Redox active cysteine residues including βCys93 are part of hemoglobin's “oxidation hotspot”. Irreversible oxidation of βCys93 ultimately leads to the collapse of the hemoglobin structure and release of heme. Human fetal hemoglobin (HbF), similarly to the adult hemoglobin (HbA), carries redox active γCys93 in the vicinity of the heme pocket. Site-directed mutagenesis has been used in this study to examine the impact of removal and/or addition of cysteine residues in HbF. The redox activities of the recombinant mutants were examined by determining the spontaneous autoxidation rate, the hydrogen peroxide induced ferric to ferryl oxidation rate, and irreversible oxidation of cysteine by quantitative mass spectrometry. We found that substitution of γCys93Ala resulted in oxidative instability characterized by increased oxidation rates. Moreover, the addition of a cysteine residue at α19 on the exposed surface of the α-chain altered the regular electron transfer pathway within the protein by forming an alternative oxidative site. This may also create an accessible site for di-sulfide bonding between Hb subunits. Engineering of cysteine residues at suitable locations may be useful as a tool for managing oxidation in a protein, and for Hb, a way to stave off oxidation reactions resulting in a protein structural collapse. Keywords: Fetal hemoglobin, Site-directed mutagenesis, Cysteine, Oxidation, Hydrogen peroxide, Protein electron transfer
    Keywords Medicine (General) ; R5-920 ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2018-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.

    Yiping Jia / Francine Wood / Paul W Buehler / Abdu I Alayash

    PLoS ONE, Vol 8, Iss 3, p e

    2013  Volume 59841

    Abstract: Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with ... ...

    Abstract Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 500
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    Sandeep N Shah / Monique P Gelderman / Emily M A Lewis / John Farrel / Francine Wood / Michael Brad Strader / Abdu I Alayash / Jaroslav G Vostal

    PLoS ONE, Vol 11, Iss 12, p e

    2016  Volume 0166657

    Abstract: Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative ... ...

    Abstract Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top