LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: A Prototype Scintillator Real-Time Beam Monitor for Ultra-high Dose Rate Radiotherapy.

    Levin, Daniel S / Friedman, Peter S / Ferretti, Claudio / Ristow, Nicholas / Tecchio, Monica / Litzenberg, Dale W / Bashkirov, Vladimir / Schulte, Reinhard

    ArXiv

    2024  

    Abstract: Background: FLASH Radiotherapy (RT) is an emergent cancer radiotherapy modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast ... ...

    Abstract Background: FLASH Radiotherapy (RT) is an emergent cancer radiotherapy modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications.
    Purpose: A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: 1) large area coverage; 2) a low mass profile; 3) a linear response over a broad dynamic range; 4) radiation hardness; 5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation do-simetry and excellent spatial resolution.
    Methods: The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ~10 cm. A field programmable gate array (FPGA) data acquisition system (DAQ) generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (
    Results: Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 minutes at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude vs beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of > 40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 μm. Tests of the firmware beta version show successful operation at 20,000 Hz frame rate or 50 μs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 μs.
    Conclusions: The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥ 50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 μs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.
    Language English
    Publishing date 2024-03-08
    Publishing country United States
    Document type Preprint
    ISSN 2331-8422
    ISSN (online) 2331-8422
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy.

    Levin, Daniel S / Friedman, Peter S / Ferretti, Claudio / Ristow, Nicholas / Tecchio, Monica / Litzenberg, Dale W / Bashkirov, Vladimir / Schulte, Reinhard

    Medical physics

    2024  Volume 51, Issue 4, Page(s) 2905–2923

    Abstract: Background: FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam ... ...

    Abstract Background: FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications.
    Purpose: A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: (1) large area coverage; (2) a low mass profile; (3) a linear response over a broad dynamic range; (4) radiation hardness; (5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation dosimetry and excellent spatial resolution.
    Methods: The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ∼10 cm. A field programmable gate array (FPGA) data acquisition system generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (
    Results: Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 min at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude versus beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of >40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 µm. Tests of the firmware beta version show successful operation at 20 000 Hz frame rate or 50 µs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 µs.
    Conclusions: The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 µs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.
    MeSH term(s) Protons ; Radiometry ; Radionuclide Imaging ; Radiotherapy Dosage
    Chemical Substances Protons
    Language English
    Publishing date 2024-03-08
    Publishing country United States
    Document type Journal Article
    ZDB-ID 188780-4
    ISSN 2473-4209 ; 0094-2405
    ISSN (online) 2473-4209
    ISSN 0094-2405
    DOI 10.1002/mp.17018
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Book ; Conference proceedings: Advanced flat panel display technologies

    Friedman, Peter S

    7-8 February 1994, San Jose, California

    (SPIE proceedings series ; 2174)

    1994  

    Institution Society for Imaging Science and Technology
    Event/congress Conference (1994.02.07-08, SanJoseCalif.)
    Author's details sponsored by IS&T, the Society for Imaging Science and Technology. Peter S. Friedman, chair/ed
    Series title SPIE proceedings series ; 2174
    Keywords Electroluminescent display systems/Congresses ; Information display systems/Congresses ; Liquid crystal displays/Congresses
    Language English
    Size IX, 222 S, Ill., graph. Darst
    Publisher SPIE
    Publishing place Bellingham, Wash
    Document type Book ; Conference proceedings
    Note Includes bibliographical references and index
    ISBN 0819414697 ; 9780819414694
    Database Library catalogue of the German National Library of Science and Technology (TIB), Hannover

    More links

    Kategorien

  4. Book ; Online: Plasma Panel Sensors for Particle and Beam Detection

    Friedman, Peter S. / Ball, Robert / Beene, James R. / Benhammou, Yan / Bentefour, E. H. / Chapman, J. W. / Etzion, Erez / Ferretti, Claudio / Guttman, Nir / Levin, Daniel S. / Ben-Moshe, Meny / Silver, Yiftah / Varner, Robert L. / Weaverdyck, Curtis / Zhou, Bing

    2012  

    Abstract: The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, ...

    Abstract The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.

    Comment: 2012 IEEE NSS
    Keywords Physics - Instrumentation and Detectors ; High Energy Physics - Experiment
    Subject code 621
    Publishing date 2012-11-22
    Publishing country us
    Document type Book ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top