LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Hofmann, Ariane L"
  2. AU="Morawski, Franciszek"
  3. AU="Huo, Lijun"
  4. AU="Weinheimer, Claudia"
  5. AU="Akbari, Syed Hassan A"
  6. AU="Lutfi H. Alfarsi"
  7. AU="Maria Rosaria Campitiello"
  8. AU="Kazzi, Ziad N"
  9. AU=Jain Somya
  10. AU="Ming, Xiu-Fen"
  11. AU="Gileadi, Opher"
  12. AU="Wang, Zeng-Liang"
  13. AU=Berman Jonathan M
  14. AU="Vivienne Clark"
  15. AU=Sheridan Brian S AU=Sheridan Brian S
  16. AU="Yang, Zuyu"
  17. AU="Suzuki, Tomo"
  18. AU="Horiguchi, Akihiko"
  19. AU="Band, Rebecca"
  20. AU=Pablos Isabel AU=Pablos Isabel
  21. AU="O'Flaherty, Vincent"
  22. AU="Jérémie, Riou"
  23. AU="Ma, Yunshu"
  24. AU="Pu, Junyi"
  25. AU="Benlloch, Sara"
  26. AU="Jay D Evans"
  27. AU=Unger Jean-Pierre
  28. AU="Soday, Lior"
  29. AU="Wan, Xuan"
  30. AU="Camille Fritzell"
  31. AU=Wei Huijun
  32. AU="Levine, Morgan E"
  33. AU="Chen, Yalei"
  34. AU="Rogaeva, Ekaterina" AU="Rogaeva, Ekaterina"
  35. AU="Jain, Ishaan"
  36. AU="Chatelier, Josh"
  37. AU="Passarelli, L."
  38. AU="Marques, R"
  39. AU="Restaino, Valeria"
  40. AU="Wang, Haochen"
  41. AU=Shoib Sheikh
  42. AU=Patel Ishan
  43. AU="Mongioì, Laura M"
  44. AU="Fernández-Pacheco, Borja Camacho"
  45. AU=Waghmare Alpana AU=Waghmare Alpana
  46. AU="Peyre, Marion"
  47. AU=Mulazimoglu L
  48. AU=Roy Satyaki
  49. AU="Li Yuanyuan"
  50. AU=Khan Shehryar
  51. AU=Cole Sarah L
  52. AU="Júnior, Raimundo Nonato Colares Camargo"
  53. AU="Feeney, Judith A"

Suchergebnis

Treffer 1 - 3 von insgesamt 3

Suchoptionen

  1. Artikel ; Online: Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers.

    Hofmann, Ariane L / Behr, Jonas / Singer, Jochen / Kuipers, Jack / Beisel, Christian / Schraml, Peter / Moch, Holger / Beerenwinkel, Niko

    BMC bioinformatics

    2017  Band 18, Heft 1, Seite(n) 8

    Abstract: Background: Next-generation sequencing of matched tumor and normal biopsy pairs has become a technology of paramount importance for precision cancer treatment. Sequencing costs have dropped tremendously, allowing the sequencing of the whole exome of ... ...

    Abstract Background: Next-generation sequencing of matched tumor and normal biopsy pairs has become a technology of paramount importance for precision cancer treatment. Sequencing costs have dropped tremendously, allowing the sequencing of the whole exome of tumors for just a fraction of the total treatment costs. However, clinicians and scientists cannot take full advantage of the generated data because the accuracy of analysis pipelines is limited. This particularly concerns the reliable identification of subclonal mutations in a cancer tissue sample with very low frequencies, which may be clinically relevant.
    Results: Using simulations based on kidney tumor data, we compared the performance of nine state-of-the-art variant callers, namely deepSNV, GATK HaplotypeCaller, GATK UnifiedGenotyper, JointSNVMix2, MuTect, SAMtools, SiNVICT, SomaticSniper, and VarScan2. The comparison was done as a function of variant allele frequencies and coverage. Our analysis revealed that deepSNV and JointSNVMix2 perform very well, especially in the low-frequency range. We attributed false positive and false negative calls of the nine tools to specific error sources and assigned them to processing steps of the pipeline. All of these errors can be expected to occur in real data sets. We found that modifying certain steps of the pipeline or parameters of the tools can lead to substantial improvements in performance. Furthermore, a novel integration strategy that combines the ranks of the variants yielded the best performance. More precisely, the rank-combination of deepSNV, JointSNVMix2, MuTect, SiNVICT and VarScan2 reached a sensitivity of 78% when fixing the precision at 90%, and outperformed all individual tools, where the maximum sensitivity was 71% with the same precision.
    Conclusions: The choice of well-performing tools for alignment and variant calling is crucial for the correct interpretation of exome sequencing data obtained from mixed samples, and common pipelines are suboptimal. We were able to relate observed substantial differences in performance to the underlying statistical models of the tools, and to pinpoint the error sources of false positive and false negative calls. These findings might inspire new software developments that improve exome sequencing pipelines and further the field of precision cancer treatment.
    Mesh-Begriff(e) Algorithms ; DNA, Neoplasm/chemistry ; DNA, Neoplasm/metabolism ; Exome/genetics ; Genomics ; High-Throughput Nucleotide Sequencing ; Humans ; Kidney Neoplasms/genetics ; Kidney Neoplasms/pathology ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA
    Chemische Substanzen DNA, Neoplasm
    Sprache Englisch
    Erscheinungsdatum 2017-01-03
    Erscheinungsland England
    Dokumenttyp Journal Article
    ZDB-ID 2041484-5
    ISSN 1471-2105 ; 1471-2105
    ISSN (online) 1471-2105
    ISSN 1471-2105
    DOI 10.1186/s12859-016-1417-7
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  2. Artikel: NGS-pipe: a flexible, easily extendable and highly configurable framework for NGS analysis

    Singer, Jochen / Ruscheweyh, Hans-Joachim / Hofmann, Ariane L / Thurnherr, Thomas / Singer, Franziska / Toussaint, Nora C / Ng, Charlotte K Y / Piscuoglio, Salvatore / Beisel, Christian / Christofori, Gerhard / Dummer, Reinhard / Hall, Michael N / Krek, Wilhelm / Levesque, Mitchell P / Manz, Markus G / Moch, Holger / Papassotiropoulos, Andreas / Stekhoven, Daniel J / Wild, Peter /
    Wüst, Thomas / Rinn, Bernd / Beerenwinkel, Niko / Berger, Bonnie

    Bioinformatics. 2018 Jan. 01, v. 34, no. 1

    2018  

    Abstract: Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the ... ...

    Abstract Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the agreement of results from different facilities is often small. General standards for quality control, reproducibility and documentation are missing. We developed NGS-pipe, a flexible, transparent and easy-to-use framework for the design of pipelines to analyze whole-exome, whole-genome and transcriptome sequencing data. NGS-pipe facilitates the harmonization of genomic data analysis by supporting quality control, documentation, reproducibility, parallelization and easy adaptation to other NGS experiments. https://github.com/cbg-ethz/NGS-pipe
    Schlagwörter bioinformatics ; genomics ; high-throughput nucleotide sequencing ; quality control ; transcriptomics
    Sprache Englisch
    Erscheinungsverlauf 2018-0101
    Umfang p. 107-108.
    Erscheinungsort Oxford University Press
    Dokumenttyp Artikel
    ZDB-ID 1468345-3
    ISSN 1460-2059 ; 1367-4811 ; 1367-4803
    ISSN (online) 1460-2059 ; 1367-4811
    ISSN 1367-4803
    DOI 10.1093/bioinformatics/btx540
    Datenquelle NAL Katalog (AGRICOLA)

    Zusatzmaterialien

    Kategorien

  3. Artikel ; Online: NGS-pipe: a flexible, easily extendable and highly configurable framework for NGS analysis.

    Singer, Jochen / Ruscheweyh, Hans-Joachim / Hofmann, Ariane L / Thurnherr, Thomas / Singer, Franziska / Toussaint, Nora C / Ng, Charlotte K Y / Piscuoglio, Salvatore / Beisel, Christian / Christofori, Gerhard / Dummer, Reinhard / Hall, Michael N / Krek, Wilhelm / Levesque, Mitchell P / Manz, Markus G / Moch, Holger / Papassotiropoulos, Andreas / Stekhoven, Daniel J / Wild, Peter /
    Wüst, Thomas / Rinn, Bernd / Beerenwinkel, Niko

    Bioinformatics (Oxford, England)

    2017  Band 34, Heft 1, Seite(n) 107–108

    Abstract: Motivation: Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, ... ...

    Abstract Motivation: Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the agreement of results from different facilities is often small. General standards for quality control, reproducibility and documentation are missing.
    Results: We developed NGS-pipe, a flexible, transparent and easy-to-use framework for the design of pipelines to analyze whole-exome, whole-genome and transcriptome sequencing data. NGS-pipe facilitates the harmonization of genomic data analysis by supporting quality control, documentation, reproducibility, parallelization and easy adaptation to other NGS experiments.
    Availability and implementation: https://github.com/cbg-ethz/NGS-pipe.
    Contact: niko.beerenwinkel@bsse.ethz.ch.
    Mesh-Begriff(e) Gene Expression Profiling/methods ; Gene Expression Profiling/standards ; Genomics/methods ; High-Throughput Nucleotide Sequencing/methods ; High-Throughput Nucleotide Sequencing/standards ; Humans ; Neoplasms/genetics ; Reproducibility of Results ; Sequence Analysis, DNA/methods ; Sequence Analysis, DNA/standards ; Sequence Analysis, RNA/methods ; Sequence Analysis, RNA/standards ; Software
    Sprache Englisch
    Erscheinungsdatum 2017-10-02
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 1422668-6
    ISSN 1367-4811 ; 1367-4803
    ISSN (online) 1367-4811
    ISSN 1367-4803
    DOI 10.1093/bioinformatics/btx540
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang