LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 19

Search options

  1. Article ; Online: Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices

    Hina Agraval / Taylor Crue / Niccolette Schaunaman / Mari Numata / Brian J. Day / Hong Wei Chu

    International Journal of Molecular Sciences, Vol 24, Iss 4295, p

    2023  Volume 4295

    Abstract: The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and ...

    Abstract The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
    Keywords electronic cigarettes ; PCLS ; Influenza A virus ; TRAIL ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 690
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Desert particulate matter from Afghanistan increases airway obstruction in human distal lungs exposed to type 2 cytokine IL-13

    Diana Cervantes / Niccolette Schaunaman / Gregory P. Downey / Hong Wei Chu / Brian J. Day

    Frontiers in Medicine, Vol

    2023  Volume 10

    Abstract: IntroductionDeployment related asthma-like symptoms including distal airway obstruction have been described in U.S. military personnel who served in Iraq and Afghanistan. The mechanisms responsible for the development of distal airway obstruction in ... ...

    Abstract IntroductionDeployment related asthma-like symptoms including distal airway obstruction have been described in U.S. military personnel who served in Iraq and Afghanistan. The mechanisms responsible for the development of distal airway obstruction in deployers exposed to desert particulate matter (PM) is not well understood. We sought to determine if respiratory exposure to PM from Afghanistan (PMa) increases human distal airway hyperresponsiveness (AHR) with or without exposures to IL-13, a type 2 cytokine. We further tested whether mitochondrial dysfunction, such as ATP signaling and oxidative stress, may contribute to PMa- mediated AHR.MethodsPrecision-cut lung slices from donors without a history of lung disease, tobacco smoking, or vaping were pre-treated with IL-13 for 24 h. This was followed by exposure to PMa or PM from California (PMc, control for PMa) for up to 72 h. The role of hydrogen peroxide and ATP in AHR was assessed using the antioxidant enzyme catalase or an ATP receptor P2Y13 antagonist MRS2211. AHR in response to methacholine challenges as well as cytokine IL-8 production were measured.ResultsPMa alone, but not PMc alone, trended to increase AHR. Importantly, the combination of PMa and IL-13 significantly amplified AHR compared to control or PMc+IL-13. PMa alone and in combination with IL-13 increased IL-8 as compared to the control. PMa increased H2O2 and ATP. MRS211 and catalase reduced AHR in PCLS exposed to both PMa and IL-13.DiscussionOur data suggests that PMa in a type 2 inflammation-high lung increased AHR in part through oxidative stress and ATP signaling.
    Keywords particulate matter ; human lung ; IL-13 ; airway hyperresponsiveness ; oxidative stress ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Airway epithelial immunoproteasome subunit LMP7 protects against rhinovirus infection

    Kris Genelyn Dimasuay / Niccolette Schaunaman / Bruce Berg / Diana Cervantes / Elke Kruger / Frank L. Heppner / Deborah A. Ferrington / Hong Wei Chu

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 13

    Abstract: Abstract Immunoproteasomes (IP) serve as an important modulator of immune responses to pathogens and other pathological factors. LMP7/β5i, one of the IP subunits, plays a critical role in autoimmune diseases by downregulating inflammation. Rhinovirus (RV) ...

    Abstract Abstract Immunoproteasomes (IP) serve as an important modulator of immune responses to pathogens and other pathological factors. LMP7/β5i, one of the IP subunits, plays a critical role in autoimmune diseases by downregulating inflammation. Rhinovirus (RV) infection is a major risk factor in the exacerbations of respiratory inflammatory diseases, but whether LMP7 regulates RV-mediated inflammation in the lung particularly in the airway epithelium, the first line of defense against RV infection, remains unclear. In this study, we determined whether airway epithelial LMP7 promotes the resolution of RV-mediated lung inflammation. Inducible airway epithelial-specific LMP7-deficient (conditional knockout, CKO) mice were generated to reveal the in vivo anti-inflammatory and antiviral functions of LMP7. By using LMP7-deficient primary human airway epithelial cells generated by CRISPR-Cas9, we confirmed that airway epithelial LMP7 decreased pro-inflammatory cytokines and viral load during RV infection. Additionally, airway epithelial LMP7 enhanced the expression of a negative immune regulator A20/TNFAIP3 during viral infection that may contribute to the anti-inflammatory function of LMP7. We also discovered that induction of LMP7 by a low dose of polyinosinic:polycytidylic acid (PI:C) reduced RV-mediated inflammation in our CKO mice infected with RV. Our findings suggest that airway epithelial LMP7 has anti-inflammatory and antiviral functions that is critical to the resolution of RV-mediated lung inflammation. Induction of airway epithelial LMP7 may open a novel avenue for therapeutic intervention against RV infection.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610 ; 570
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Bacterial DNA amplifies neutrophilic inflammation in IL-17-exposed airways

    Nastaran Mues / Richard J. Martin / Rafeul Alam / Niccolette Schaunaman / Kris Genelyn Dimasuay / Christena Kolakowski / Clyde J. Wright / Lijun Zheng / Hong Wei Chu

    ERJ Open Research, Vol 9, Iss

    2023  Volume 1

    Abstract: Background Neutrophilic asthma (NA) is associated with increased airway interleukin (IL)-17 and abnormal bacterial community such as dominance of nontypeable Haemophilus influenzae (NTHi), particularly during asthma exacerbations. Bacteria release ... ...

    Abstract Background Neutrophilic asthma (NA) is associated with increased airway interleukin (IL)-17 and abnormal bacterial community such as dominance of nontypeable Haemophilus influenzae (NTHi), particularly during asthma exacerbations. Bacteria release various products including DNA, but whether they cooperate with IL-17 in exaggerating neutrophilic inflammation is unclear. We sought to investigate the role of bacteria-derived DNA in airway neutrophilic inflammation related to IL-17-high asthma and underlying mechanisms (e.g. Toll-like receptor 9 (TLR9)/IL-36γ signalling axis). Methods Bacterial DNA, IL-8 and IL-36γ were measured in bronchoalveolar lavage fluid (BALF) of people with asthma and healthy subjects. The role of co-exposure to IL-17 and bacterial DNA or live bacteria in neutrophilic inflammation, and the contribution of the TLR9/IL-36γ signalling axis, were determined in cultured primary human airway epithelial cells and alveolar macrophages, and mouse models. Results Bacterial DNA levels were increased in asthma BALF, which positively correlated with IL-8 and neutrophil levels. Moreover, IL-36γ increased in BALF of NA patients. Bacterial DNA or NTHi infection under an IL-17-high setting amplified IL-8 production and mouse lung neutrophilic inflammation. DNase I treatment in IL-17-exposed and NTHi-infected mouse lungs reduced neutrophilic inflammation. Mechanistically, bacterial DNA-mediated amplification of neutrophilic inflammation is in part dependent on the TLR9/IL-36γ signalling axis. Conclusions Bacterial DNA amplifies airway neutrophilic inflammation in an IL-17-high setting partly through the TLR9 and IL-36γ signalling axis. Our novel findings may offer several potential therapeutic targets including TLR9 antagonists, IL-36γ neutralising antibodies and DNase I to reduce asthma severity associated with exaggerated airway neutrophilic inflammation.
    Keywords Medicine ; R
    Subject code 610
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher European Respiratory Society
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment

    Nicole Roberts / Reem Al Mubarak / David Francisco / Monica Kraft / Hong Wei Chu

    Clinical and Translational Medicine, Vol 7, Iss 1, Pp 1-

    2018  Volume 10

    Abstract: Abstract Background Because of its advantage as a minimally invasive procedure, nasal brushings have been increasingly used and proposed as a valuable approach to study lower airway diseases in lieu of bronchial epithelial cells. However, there is ... ...

    Abstract Abstract Background Because of its advantage as a minimally invasive procedure, nasal brushings have been increasingly used and proposed as a valuable approach to study lower airway diseases in lieu of bronchial epithelial cells. However, there is limited or conflicting evidence pertaining to whether nasal samples can be surrogates to bronchial samples. The goal of the present study is to test whether nasal epithelial cells have similar antiviral and inflammatory responses to IL-13 treatment and rhinovirus infection, a condition mimicking virally induced asthma exacerbation. Nasal and bronchial airway epithelial cells taken from the same patient were cultured under submerged and air–liquid interface (ALI) culture in the absence or presence of rhinovirus and IL-13 treatment. Inflammatory cytokines IP-10 and eotaxin-3, antiviral gene Mx1 and viral levels were measured. Results In the absence of IL-13 treatment, nasal and bronchial cells showed a similar IP-10 response in both ALI and submerged cultures. Under the ALI culture, short term (e.g., 3 days) IL-13 treatment had a minimal effect on viral and Mx1 levels in both cell types. However, prolonged (e.g., 14 days) IL-13 treatments in both cell types decreased viral load and Mx1 expression. Under the submerged culture, IL-13 treatment in both cell types has minimal effects on viral load, IP-10 and Mx1. IL-13-induced eotaxin-3 production was similar in both types of cells under either submerged or ALI culture, which was not affected by viral infection. Conclusions Our data suggest that nasal epithelial cells could serve as a surrogate to bronchial epithelial cells in future studies aimed at defining the role of type 2 cytokine IL-13 in regulating pro-inflammatory and antiviral responses.
    Keywords Epithelial cells ; Rhinovirus ; IL-13 ; IP-10 ; Eotaxin ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2018-05-01T00:00:00Z
    Publisher Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection.

    Fabienne Gally / Hong Wei Chu / Russell P Bowler

    PLoS ONE, Vol 8, Iss 1, p e

    2013  Volume 51784

    Abstract: Cigarette smoking is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), which is characterized by chronic inflammation of the airways and destruction of lung parenchyma. Repeated and sustained bacterial infections are clearly linked to ... ...

    Abstract Cigarette smoking is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), which is characterized by chronic inflammation of the airways and destruction of lung parenchyma. Repeated and sustained bacterial infections are clearly linked to disease pathogenesis (e.g., exacerbations) and a huge burden on health care costs. The airway epithelium constitutes the first line of host defense against infection and our previous study indicated that Fatty Acid Binding Protein 5 (FABP5) is down regulated in airway epithelial cells of smokers with COPD as compared to smokers without COPD. We hypothesized that cigarette smoke (CS) exposure down regulates FABP5, thus, contributing to a more sustained inflammation in response to bacterial infection. In this report, we show that FABP5 is increased following bacterial infection but decreased following CS exposure of primary normal human bronchial epithelial (NHBE) cells. The goal of this study was to address FABP5 function by knocking down or overexpressing FABP5 in primary NHBE cells exposed to CS. Our data indicate that FABP5 down regulation results in increased P. aeruginosa bacterial load and inflammatory cytokine levels (e.g., IL-8) and decreased expression of the anti-bacterial peptide, β defensin-2. On the contrary, FABP5 overexpression exerts a protective function in airway epithelial cells against P. aeruginosa infection by limiting the production of IL-8 and increasing the expression of β defensin-2. Our study indicates that FABP5 exerts immunomodulatory functions in the airway epithelium against CS exposure and subsequent bacterial infection through its modulation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ activity. These findings support the development of FABP5/PPAR-γ-targeted therapeutic approach to prevent airway inflammation by restoring antimicrobial immunity during COPD exacerbations.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570 ; 610
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional

    Ian T. Stancil / Jacob E. Michalski / Duncan Davis-Hall / Hong Wei Chu / Jin-Ah Park / Chelsea M. Magin / Ivana V. Yang / Bradford J. Smith / Evgenia Dobrinskikh / David A. Schwartz

    Nature Communications, Vol 12, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Environmental and genetic risk factors affect the distal airway epithelium in idiopatic pulmonary fibrosis (IPF) but the role of the epithelium in IPF remains unclear. Here the authors show that pathologic activation of the ERBB-YAP axis induces dynamic ... ...

    Abstract Environmental and genetic risk factors affect the distal airway epithelium in idiopatic pulmonary fibrosis (IPF) but the role of the epithelium in IPF remains unclear. Here the authors show that pathologic activation of the ERBB-YAP axis induces dynamic and structural dysfunction in the distal airway epithelium eliciting a pro-fibrotic phenotype in mesenchymal cells.
    Keywords Science ; Q
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Sub-chronic exposure to second hand smoke induces airspace leukocyte infiltration and decreases lung elastance

    JohnM.Hartney / RobertaPelanda / Hong WeiChu

    Frontiers in Physiology, Vol

    2012  Volume 3

    Abstract: Exposure to second hand tobacco smoke is associated with the development and/or exacerbation of several different pulmonary diseases in humans. To better understand the possible effects of second hand smoke exposure in humans, we sub-chronically (4 weeks) ...

    Abstract Exposure to second hand tobacco smoke is associated with the development and/or exacerbation of several different pulmonary diseases in humans. To better understand the possible effects of second hand smoke exposure in humans, we sub-chronically (4 weeks) exposed mice to a mixture of mainstream and sidestream tobacco smoke at concentrations similar to second hand smoke exposure in humans. The inflammatory response to smoke exposures was assessed at the end of this time by enumeration of pulmonary leukocyte infiltration together with measurements of lung elastance and pathology. This response was measured in both healthy wild type (C57BL/6) mice as well as mouse mutants deficient in the expression of Arhgef1 (Arhgef1–/–) that display constitutive pulmonary inflammation and decreased lung elastance reminiscent of emphysema. The results from this study show that sub-chronic second hand smoke exposure leads to significantly increased numbers of airspace leukocytes in both healthy and mutant animals. While sub-chronic cigarette smoke exposure is not sufficient to induce changes in lung architecture as measured by mean linear intercept, both groups exhibit a significant decrease in lung elastance. Together these data demonstrate that even sub-chronic exposure to second hand smoke is sufficient to induce pulmonary inflammation and decrease lung elastance in both healthy and diseased animals and in the absence of tissue destruction.
    Keywords Inflammation ; chronic obstructive pulmonary disease ; lung mechanics ; second hand smoke ; airspace structure ; Physiology ; QP1-981 ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2012-07-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Qun Wu / Di Jiang / Maisha Minor / Hong Wei Chu

    PLoS ONE, Vol 9, Iss 9, p e

    2014  Volume 108342

    Abstract: The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence ... ...

    Abstract The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection.We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: IL-13 induces periostin and eotaxin expression in human primary alveolar epithelial cells

    Yoko Ito / Reem Al Mubarak / Nicole Roberts / Kelly Correll / William Janssen / James Finigan / Rangnath Mishra / Hong Wei Chu

    PLoS ONE, Vol 13, Iss 4, p e

    Comparison with paired airway epithelial cells.

    2018  Volume 0196256

    Abstract: Alveolar epithelial cells are critical to the pathogenesis of pulmonary inflammation and fibrosis, which are associated with overexpression of type 2 cytokine IL-13. IL-13 is known to induce the production of profibrotic (e.g., periostin) and pro- ... ...

    Abstract Alveolar epithelial cells are critical to the pathogenesis of pulmonary inflammation and fibrosis, which are associated with overexpression of type 2 cytokine IL-13. IL-13 is known to induce the production of profibrotic (e.g., periostin) and pro-inflammatory (e.g., eotaxin-3) mediators in human airway epithelial cells, but it remains unclear if human primary alveolar epithelial cells increase periostin and eotaxin expression following IL-13 stimulation. The goals of this study are to determine if alveolar epithelial cells increase periostin and eotaxin expression upon IL-13 stimulation, and if alveolar and airway epithelial cells from the same subjects have similar responses to IL-13. Paired alveolar and airway epithelial cells were isolated from donors without any lung disease, and cultured under submerged or air-liquid interface conditions with or without IL-13. Up-regulation of periostin protein and mRNA was observed in IL-13-stimulated alveolar epithelial cells, which was comparable to that in IL-13-stimulated paired airway epithelial cells. IL-13 also increased eotaxin-3 expression in alveolar epithelial cells, but the level of eotaxin mRNA was lower in alveolar epithelial cells than in airway epithelial cells. Our findings demonstrate that human alveolar epithelial cells are able to produce periostin and eotaxin in responses to IL-13 stimulation. This study suggests the need to further determine the contribution of alveolar epithelial cell-derived mediators to pulmonary fibrosis.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top