LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors

Consuelo Coronel Arrechea / María Luz Giolito / Iris Alejandra García / Gastón Soria / Javier Valdez Taubas

Open Biology, Vol 11, Iss

2021  Volume 8

Abstract: Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been ... ...

Abstract Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.
Keywords S-acylation ; protein palmitoylation ; drug discovery ; inhibitors ; yeast ; Biology (General) ; QH301-705.5
Subject code 572
Language English
Publishing date 2021-08-01T00:00:00Z
Publisher The Royal Society
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top