LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Xylopic acid-amodiaquine and xylopic acid-artesunate combinations are effective in managing malaria in Plasmodium berghei-infected mice

    Silas Acheampong Osei / Robert Peter Biney / Ernest Obese / Mary Atta-Panyi Agbenyeku / Isaac Yaw Attah / Elvis Ofori Ameyaw / Johnson Nyarko Boampong

    Malaria Journal, Vol 20, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Abstract Background Evidence of Plasmodium resistance to some of the current anti-malarial agents makes it imperative to search for newer and effective drugs to combat malaria. Therefore, this study evaluated whether the co-administrations of xylopic ... ...

    Abstract Abstract Background Evidence of Plasmodium resistance to some of the current anti-malarial agents makes it imperative to search for newer and effective drugs to combat malaria. Therefore, this study evaluated whether the co-administrations of xylopic acid-amodiaquine and xylopic acid-artesunate combinations will produce a synergistic anti-malarial effect. Methods Antiplasmodial effect of xylopic acid (XA: 3, 10, 30, 100, 150 mg kg−1), artesunate (ART: 1, 2, 4, 8, 16 mg kg−1), and amodiaquine (AQ: 1.25, 2.5, 5, 10, 20 mg kg−1) were evaluated in Plasmodium berghei (strain ANKA)-infected mice to determine respective ED50s. Artemether/lumefantrine was used as the positive control. XA/ART and XA/AQ were subsequently administered in a fixed-dose combination of their ED50s (1:1) and the combination fractions of their ED50s (1/2, 1/4, 1/8, 1/16, and 1/32) to determine the experimental ED50s (Zexp). An isobologram was constructed to determine the nature of the interaction between XA/ART, and XA/AQ combinations by comparing Zexp with the theoretical ED50 (Zadd). Bodyweight and 30-day survival post-treatment were additionally recorded. Results ED50s for XA, ART, and AQ were 9.0 ± 3.2, 1.61 ± 0.6, and 3.1 ± 0.8 mg kg−1, respectively. The Zadd, Zexp, and interaction index for XA/ART co-administration was 5.3 ± 2.61, 1.98 ± 0.25, and 0.37, respectively while that of XA/AQ were 6.05 ± 2.0, 1.69 ± 0.42, and 0.28, respectively. The Zexp for both combination therapies lay significantly (p < 0.001) below the additive isoboles showing XA acts synergistically with both ART and AQ in clearing the parasites. High doses of XA/ART combination significantly (p < 0.05) increased the survival days of infected mice with a mean hazard ratio of 0.40 while all the XA/AQ combination doses showed a significant (p < 0.05) increase in the survival days of infected mice with a mean hazard ratio of 0.27 similar to AL. Both XA/ART and XA/AQ combined treatments significantly (p < 0.05) reduced weight loss. Conclusion Xylopic acid ...
    Keywords Antimalarial drugs ; Combination therapies ; Isobolographic analysis ; Xylopic acid ; Artesunate ; Amodiaquine ; Arctic medicine. Tropical medicine ; RC955-962 ; Infectious and parasitic diseases ; RC109-216
    Subject code 630
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Development of Modified-Release Diclofenac Sodium Capsules Using Blends of Pectin-Clay Multiparticulate Hybrid Systems as Release Retardants

    Ofosua Adi-Dako / Frederick William Akuffo Owusu / Isaac Yaw Attah / Doris Kumadoh / Prince George Acquah Jnr / Issaka Nelson / Nii Odartey Hutton-Mills / Karen Yaa Yeboaa Obese / Joseph Adusei Sarkodie / Benoit Banga N’guessan / Awo Afi Kwapong / Christina Osei-Asare / Emmanuel Adase / Mary-Ann Archer

    Journal of Chemistry, Vol

    2023  Volume 2023

    Abstract: A combination of inorganic and organic hybrid systems is of high research interest as they provide novel hybrid systems for the improvement of existing properties, overcoming limitations of the parent materials, and for the optimization of their ... ...

    Abstract A combination of inorganic and organic hybrid systems is of high research interest as they provide novel hybrid systems for the improvement of existing properties, overcoming limitations of the parent materials, and for the optimization of their controlled release potential. This study sorted to develop and pharmaceutically assess the release profile of diclofenac sodium using cocoa pod husk (CPH) blended with different proportions of either talc or bentonite as multiparticulate composite release modifiers. Preformulation investigations of the multiparticulate hybrid systems included pH, swelling index, moisture content, elemental contents, and flow properties. The FTIR was also used to investigate the compatibilities between pectin and bentonite (PB), pectin and talc (PT), and diclofenac and pectin-talc (DPT), as well as diclofenac and pectin-bentonite (DPB). The diclofenac content, uniformity of the weight of capsules, in vitro drug release, and the kinetics and mechanism of release of diclofenac from the hybrid systems were also investigated using mathematical models. The pectin yield was 23.3%, with the water-holding capacities of pectin-talc (PT) and pectin-bentonite (PB) hybrid systems being 6.4% and 5.0%, respectively. The swelling indices of PT and PB were 110.0 and 130.0 in 0.1 M HCL at pH 1.2 and 130.0 and 149.0 in phosphate buffer at pH 6.8, respectively. This system was also found to exhibit excellent flow properties, and there were no diclofenac-excipient interactions. All formulated batches passed the pharmacopoeial and nonpharmacopoeial tests. They also demonstrated controlled release properties via different release kinetics and mechanisms. This study shows that the pectin-talc and pectin-bentonite multiparticulate composites could be used as release modifiers in pharmaceutical preparations.
    Keywords Chemistry ; QD1-999
    Subject code 660
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top