LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation

    Vishwas Mishra / Anna Crespo-Puig / Callum McCarthy / Tereza Masonou / Izabela Glegola-Madejska / Alice Dejoux / Gabriella Dow / Matthew J. G. Eldridge / Luciano H. Marinelli / Meihan Meng / Shijie Wang / Daniel J. Bennison / Rebecca Morrison / Avinash R. Shenoy

    Nature Communications, Vol 14, Iss 1, Pp 1-

    2023  Volume 16

    Abstract: Abstract The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin ... ...

    Abstract Abstract The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
    Keywords Science ; Q
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy

    Komal Umashankar Rao / Domhnall Iain Henderson / Nitya Krishnan / Manoj Puthia / Izabela Glegola-Madejska / Lena Brive / Fanny Bjarnemark / Anna Millqvist Fureby / Karin Hjort / Dan I. Andersson / Erik Tenland / Erik Sturegård / Brian D. Robertson / Gabriela Godaly

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 9

    Abstract: Abstract Alternative ways to prevent and treat infectious diseases are needed. Previously, we identified a fungal peptide, NZX, that was comparable to rifampicin in lowering M. tuberculosis load in a murine tuberculosis (TB) infection model. Here we ... ...

    Abstract Abstract Alternative ways to prevent and treat infectious diseases are needed. Previously, we identified a fungal peptide, NZX, that was comparable to rifampicin in lowering M. tuberculosis load in a murine tuberculosis (TB) infection model. Here we assessed the potential synergy between this cationic host defence peptide (CHDP) and the current TB drugs and analysed its pharmacokinetics. We found additive effect of this peptide with isoniazid and ethambutol and confirmed these results with ethambutol in a murine TB-model. In vivo, the peptide remained stable in circulation and preserved lung structure better than ethambutol alone. Antibiotic resistance studies did not induce mutants with reduced susceptibility to the peptide. We further observed that this peptide was effective against nontuberculous mycobacteria (NTM), such as M. avium and M. abscessus, and several Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. In conclusion, the presented data supports a role for this CHDP in the treatment of drug resistant organisms.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles.

    Erik Tenland / Alexander Pochert / Nitya Krishnan / Komal Umashankar Rao / Sadaf Kalsum / Katharina Braun / Izabela Glegola-Madejska / Maria Lerm / Brian D Robertson / Mika Lindén / Gabriela Godaly

    PLoS ONE, Vol 14, Iss 2, p e

    2019  Volume 0212858

    Abstract: Background Intracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components ... ...

    Abstract Background Intracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components of the immune system by residing primarily inside alveolar macrophages, which are the desired target for TB therapy. Methods and findings We have previously identified a peptide, called NZX, capable of inhibiting both clinical and multi-drug resistant strains of M. tuberculosis at therapeutic concentrations. In this study we analysed the potential of MSPs containing NZX for the treatment of tuberculosis. The MSPs released functional NZX gradually into simulated lung fluid and the peptide filled MSPs were easily taken up by primary macrophages. In an intracellular infection model, the peptide containing particles showed increased mycobacterial killing compared to free peptide. The therapeutic potential of peptide containing MSPs was investigated in a murine infection model, showing that MSPs preserved the effect to eliminate M. tuberculosis in vivo. Conclusions In this study we found that loading the antimicrobial peptide NZX into MSPs increased the inhibition of intracellular mycobacteria in primary macrophages and preserved the ability to eliminate M. tuberculosis in vivo in a murine model. Our studies provide evidence for the feasibility of using MSPs for treatment of tuberculosis.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top