LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: ALK-activating homologous mutations in LTK induce cellular transformation.

J Devon Roll / Gary W Reuther

PLoS ONE, Vol 7, Iss 2, p e

2012  Volume 31733

Abstract: Leukocyte tyrosine kinase (LTK) is a receptor tyrosine kinase reported to be overexpressed in human leukemia. Though much regarding the function of LTK remains unknown, it shares a high degree of similarity with anaplastic lymphoma kinase (ALK), which is ...

Abstract Leukocyte tyrosine kinase (LTK) is a receptor tyrosine kinase reported to be overexpressed in human leukemia. Though much regarding the function of LTK remains unknown, it shares a high degree of similarity with anaplastic lymphoma kinase (ALK), which is found mutated in human cancer. In order to determine if LTK has transforming potential, we created two LTK mutants, F568L and R669Q, that correspond to two well-characterized activating mutations of ALK (F1174L and R1275Q). LTK-F568L, but not wildtype LTK or LTK-R669Q, transformed hematopoietic cells to cytokine independence. LTK-F568L exhibited a stronger ability to induce loss of contact inhibition and anchorage-independent growth of epithelial cells compared to LTK-R669Q, while wildtype LTK was non-transforming in the same cells. Likewise, LTK-F568L induced greater neurite outgrowth of PC12 cells than R669Q, while wildtype LTK could not. Correlating with transforming activity, LTK-F568L displayed significantly enhanced tyrosine phosphorylation compared to wildtype LTK and LTK-R668Q and induced activation of various signaling proteins including Shc, ERK and the JAK/STAT pathway. Expression of wildtype LTK or LTK-R669Q generally led to weaker activation of signaling proteins than expression of LTK-F568L, or no activation at all. Thus, mutating LTK at residue F568, and to a lesser extent at R669, activates the receptor tyrosine kinase, inducing cell signaling that results in transforming properties. These studies suggest that aberrant activation of LTK may contribute to neoplastic cell growth.
Keywords Medicine ; R ; Science ; Q
Subject code 572
Language English
Publishing date 2012-01-01T00:00:00Z
Publisher Public Library of Science (PLoS)
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top