LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Fulminant myocarditis

    Weijian Hang / Chen Chen / John M. Seubert / Dao Wen Wang

    Signal Transduction and Targeted Therapy, Vol 5, Iss 1, Pp 1-

    a comprehensive review from etiology to treatments and outcomes

    2020  Volume 15

    Keywords Medicine ; R ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Genetic Deletion or Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Cardiac Ischemia/Reperfusion Injury by Attenuating NLRP3 Inflammasome Activation

    Ahmed M. Darwesh / Hedieh Keshavarz-Bahaghighat / K. Lockhart Jamieson / John M. Seubert

    International Journal of Molecular Sciences, Vol 20, Iss 14, p

    2019  Volume 3502

    Abstract: Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating ... ...

    Abstract Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t -AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t -AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.
    Keywords cardioprotection ; ischemia-reperfusion ; mitochondria ; NLRP3 inflammasome ; polyunsaturated fatty acids ; soluble epoxide hydrolase ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: A Synthetic Epoxydocosapentaenoic Acid Analogue Ameliorates Cardiac Ischemia/Reperfusion Injury

    Ahmed M. Darwesh / Wesam Bassiouni / Adeniyi Michael Adebesin / Abdul Sattar Mohammad / John R. Falck / John M. Seubert

    International Journal of Molecular Sciences, Vol 21, Iss 5261, p

    The Involvement of the Sirtuin 3–NLRP3 Pathway

    2020  Volume 5261

    Abstract: While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR ... ...

    Abstract While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.
    Keywords ischemia-reperfusion injury ; EDP surrogates ; cardioprotection ; mitochondria ; Sirtuin 3 ; NLRP3 inflammasome ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria.

    Haitham E El-Sikhry / Nasser Alsaleh / Rambabu Dakarapu / John R Falck / John M Seubert

    PLoS ONE, Vol 11, Iss 8, p e

    2016  Volume 0160380

    Abstract: Maintenance of a healthy pool of mitochondria is important for the function and survival of terminally differentiated cells such as cardiomyocytes. Epoxyeicosatrienoic acids (EETs) are epoxy lipids derived from metabolism of arachidonic acid by ... ...

    Abstract Maintenance of a healthy pool of mitochondria is important for the function and survival of terminally differentiated cells such as cardiomyocytes. Epoxyeicosatrienoic acids (EETs) are epoxy lipids derived from metabolism of arachidonic acid by cytochrome P450 epoxygenases. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. The aim of this study was to investigate whether EET-mediated effects influence mitochondrial quality in HL-1 cardiac cells during starvation. HL-1 cells were subjected to serum- and amino acid free conditions for 24h. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EET-mediated events significantly improved mitochondrial function as assessed by preservation of the ADP/ATP ratio and oxidative respiratory capacity. Starvation induced mitochondrial hyperfusion observed in control cells was attenuated by UA-8. However, EET-mediated events did not affect the expression of mitochondrial dynamic proteins Fis1, DRP-1 or Mfn2. Rather we observed increased levels of OPA-1 oligomers and increased mitochondrial cristae density, which correlated with the preserved mitochondrial function. Increased DNA binding activity of pCREB and Nrf1/2 and increased SIRT1 activity together with elevated mitochondrial proteins suggest EET-mediated events led to preserved mitobiogenesis. Thus, we provide new evidence for EET-mediated events that preserve a healthier pool of mitochondria in cardiac cells following starvation-induced stress.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Soluble Epoxide Hydrolase in Aged Female Mice and Human Explanted Hearts Following Ischemic Injury

    K. Lockhart Jamieson / Ahmed M. Darwesh / Deanna K. Sosnowski / Hao Zhang / Saumya Shah / Pavel Zhabyeyev / Jun Yang / Bruce D. Hammock / Matthew L. Edin / Darryl C. Zeldin / Gavin Y. Oudit / Zamaneh Kassiri / John M. Seubert

    International Journal of Molecular Sciences, Vol 22, Iss 4, p

    2021  Volume 1691

    Abstract: Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 ... ...

    Abstract Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13–16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid ( t AUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC–MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with t AUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.
    Keywords soluble epoxide hydrolase ; ischemic injury ; failing heart ; explanted hearts ; sex differences ; aging ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Mitochondria and the aging heart

    Ketul R Chaudhary / Haitham El-Sikhry / John M Seubert

    Journal of Geriatric Cardiology, Vol 8, Iss 3, Pp 159-

    2011  Volume 167

    Abstract: The average human life span has markedly increased in modern society largely attributed to advances in medical and therapeutic sciences that have successfully reduced important health risks. However, advanced age results in numerous alterations to ... ...

    Abstract The average human life span has markedly increased in modern society largely attributed to advances in medical and therapeutic sciences that have successfully reduced important health risks. However, advanced age results in numerous alterations to cellular and subcellular components that can impact the overall health and function of an individual. Not surprisingly, advanced age is a major risk factor for the development of heart disease in which elderly populations observe increased morbidity and mortality. Even healthy individuals that appear to have normal heart function under resting conditions, actually have an increased susceptibility and vulnerability to stress. This is confounded by the impact that stress and disease can have over time to both the heart and vessels. Although, there is a rapidly growing body of literature investigating the effects of aging on the heart and how age-related alterations affect cardiac function, the biology of aging and underlying mechanisms remain unclear. In this review, we summarize effects of aging on the heart and discuss potential theories of cellular aging with special emphasis on mitochondrial dysfunction.
    Keywords aging ; heart ; mitochondria ; heart diseases ; reactive oxygen species ; Diseases of the circulatory (Cardiovascular) system ; RC666-701 ; Specialties of internal medicine ; RC581-951 ; Internal medicine ; RC31-1245 ; Medicine ; R ; DOAJ:Cardiovascular ; DOAJ:Medicine (General) ; DOAJ:Health Sciences
    Subject code 610
    Language English
    Publishing date 2011-09-01T00:00:00Z
    Publisher Science Press
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top