LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Johnson, Abigail N"
  2. AU="Zheng, Yuanyuan"
  3. AU="Xia, Fan"
  4. AU="Wilson, Louis G"
  5. AU="Aubertin, Perrine"
  6. AU=Remmel Ariana
  7. AU="Tabbo, Agnese"
  8. AU="Chen, Linyi"
  9. AU="Milovanovic, Marija"
  10. AU="Vaught, Emma K"
  11. AU="Chapelle, Caroline"
  12. AU="Schmelzeisen, R"
  13. AU=Sillanaukee P AU=Sillanaukee P
  14. AU="Meyler, Shanique"

Suchergebnis

Treffer 1 - 1 von insgesamt 1

Suchoptionen

Artikel: Analysis of Human Mutations in the Supernumerary Subunits of Complex I.

Dang, Quynh-Chi L / Phan, Duong H / Johnson, Abigail N / Pasapuleti, Mukund / Alkhaldi, Hind A / Zhang, Fang / Vik, Steven B

Life (Basel, Switzerland)

2020  Band 10, Heft 11

Abstract: Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions ... ...

Abstract Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.
Sprache Englisch
Erscheinungsdatum 2020-11-20
Erscheinungsland Switzerland
Dokumenttyp Journal Article ; Review
ZDB-ID 2662250-6
ISSN 2075-1729
ISSN 2075-1729
DOI 10.3390/life10110296
Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

Zusatzmaterialien

Kategorien

Zum Seitenanfang