LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Computational Design of Single-Peptide Nanocages with Nanoparticle Templating

    José A. Villegas / Nairiti J. Sinha / Naozumi Teramoto / Christopher D. Von Bargen / Darrin J. Pochan / Jeffery G. Saven

    Molecules, Vol 27, Iss 1237, p

    2022  Volume 1237

    Abstract: Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often ... ...

    Abstract Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
    Keywords peptides ; self-assembly ; molecular cages ; computational design ; biomaterials ; Organic chemistry ; QD241-441
    Subject code 540
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease

    Gaelen K. Dwyer / Lisa R. Mathews / José A. Villegas / Anna Lucas / Anne Gonzalez de Peredo / Bruce R. Blazar / Jean-Philippe Girard / Amanda C. Poholek / Sanjiv A. Luther / Warren Shlomchik / Hēth R. Turnquist

    The Journal of Clinical Investigation, Vol 132, Iss

    2022  Volume 12

    Abstract: Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular ... ...

    Abstract Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell–derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12–independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.
    Keywords Immunology ; Transplantation ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The isoquinoline PRL-295 increases the thermostability of Keap1 and disrupts its interaction with Nrf2

    Sharadha Dayalan Naidu / Takafumi Suzuki / Dina Dikovskaya / Elena V. Knatko / Maureen Higgins / Miu Sato / Miroslav Novak / José A. Villegas / Terry W. Moore / Masayuki Yamamoto / Albena T. Dinkova-Kostova

    iScience, Vol 25, Iss 1, Pp 103703- (2022)

    2022  

    Abstract: Summary: Transcription factor Nrf2 and its negative regulator Keap1 orchestrate a cytoprotective response against oxidative, metabolic, and inflammatory stress. Keap1 is a drug target, with several small molecules in drug development. Here, we show that ... ...

    Abstract Summary: Transcription factor Nrf2 and its negative regulator Keap1 orchestrate a cytoprotective response against oxidative, metabolic, and inflammatory stress. Keap1 is a drug target, with several small molecules in drug development. Here, we show that the isoquinoline PRL-295 increased Keap1 thermostability in lysates from cells expressing fluorescently tagged Keap1. The thermostability of endogenous Keap1 also increased in intact cells and murine liver following PRL-295 treatment. Fluorescence Lifetime Imaging–Förster Resonance Energy Transfer (FLIM-FRET) experiments in cells co-expressing sfGFP-Nrf2 and Keap1-mCherry further showed that PRL-295 prolonged the donor fluorescence lifetime, indicating disruption of the Keap1-Nrf2 protein complex. Orally administered PRL-295 to mice activated the Nrf2transcriptional target NAD(P)H:quinone oxidoreductase 1 (NQO1) in liver and decreased the levels of plasma alanine aminotransferase and aspartate aminotransferase upon acetaminophen-induced hepatic injury. Thus, PRL-295 engages the Keap1 protein target in cells and in vivo, disrupting its interaction with Nrf2, leading to activation of Nrf2-dependent transcription and hepatocellular protection.
    Keywords Biological sciences ; Biochemistry ; Molecular interaction ; Science ; Q
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Long-Term Habitat Degradation Drives Neotropical Macrophyte Species Loss While Assisting the Spread of Invasive Plant Species

    Jorge Salgado / María I. Vélez / Laura C. Caceres-Torres / Jose A. Villegas-Ibagon / Laura C. Bernal-Gonzalez / Laura Lopera-Congote / N. Melissa Martinez-Medina / Catalina González-Arango

    Frontiers in Ecology and Evolution, Vol

    2019  Volume 7

    Abstract: The spread of invasive macrophyte species is a pressing threat to neotropical shallow lakes. Yet there are few studies addressing the full extent of biotic and abiotic changes that may occur in response to invasive species. Less is known of how other ... ...

    Abstract The spread of invasive macrophyte species is a pressing threat to neotropical shallow lakes. Yet there are few studies addressing the full extent of biotic and abiotic changes that may occur in response to invasive species. Less is known of how other human-induced stressors such as eutrophication and lake draining may interact over time with invasive macrophytes to influence biodiversity. We combined limnological observations with paleoecological data from Fúquene Lake, Colombia, a eutrophic neotropical shallow lake, to provide information on the current and long-term (decades-centuries) dynamics of the spread of two well-established invasive plants Eichhornia crassipes and Egeria densa. We found a unique in macrophyte species composition in areas currently dominated by Egeria and Eichhornia. Eichhornia-dominated areas had 14 macrophyte species, turbid (secchi=19 ± 6 cm) and poorly oxygenated (3.94 ± 2.61 ppm) waters whereas Egeria-rich areas supported 5 species and had clearer (secchi=51 ± 12 cm) and better-oxygenated (6.06 ± 2.4 ppm) waters. Historical macrophyte community shifts were linked to eutrophication and lake level variation and characterized by the loss of charophytes and bryophytes before 1500 CE and subsequent reductions in Nymphaea sp., Potamogeton illinoensis and Najas guadalupensis in the early 1900s (lake draining). Eichhornia crassipes (since 1500 CE) and E. densa (early 1900s) occurred well before proposed dates of introduction (1950s and 1990 respectively). Both species have rapidly expanded since the 1990s along with Azolla filiculoides in response to an inflow water diversion scheme and heavy nutrient loads. Our results suggest that the spread of Eichhornia and Egeria was not responsible for native macrophyte species loss, but that their current dominance is exerting synergistic and antagonistic secondary effects on plant assemblages through habitat modification, competitive exclusion and promotion of habitat heterogeneity across the lake. It could therefore be misleading to suggest that ...
    Keywords Eichhornia crassipes ; Egeria densa ; Fúquene Lake ; hydrological modification ; lag-phase ; multiple stressors ; Evolution ; QH359-425 ; Ecology ; QH540-549.5
    Subject code 580 ; 333
    Language English
    Publishing date 2019-04-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article: Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion

    Pulsipher, Katherine W / Benjamin W. Roose / Ivan J. Dmochowski / Jeffery G. Saven / Jennifer Yoon / Jose A. Villegas / Tacey L. Hicks

    Biochemistry. 2017 July 18, v. 56, no. 28

    2017  

    Abstract: Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a ... ...

    Abstract Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer–dimer interfaces, but specific “hot-spot” residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer–dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0–800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.
    Keywords Archaeoglobus ; crystal structure ; dissociation ; electrostatic interactions ; encapsulation ; ferritin ; ionic strength ; mutants ; nanobiotechnology ; nanogold ; nanoparticles ; protein subunits ; sodium chloride ; temperature ; thermodynamics
    Language English
    Dates of publication 2017-0718
    Size p. 3596-3606.
    Publishing place American Chemical Society
    Document type Article
    ZDB-ID 1108-3
    ISSN 1520-4995 ; 0006-2960
    ISSN (online) 1520-4995
    ISSN 0006-2960
    DOI 10.1021/acs.biochem.7b00296
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  6. Article ; Online: DHA- RICH FISH OIL IMPROVES COMPLEX REACTION TIME IN FEMALE ELITE SOCCER PLAYERS

    José F. Guzmán / Hector Esteve / Carlos Pablos / Ana Pablos / Cristina Blasco / José A. Villegas

    Journal of Sports Science and Medicine, Vol 10, Iss 2, Pp 301-

    2011  Volume 305

    Abstract: Omega-3 fatty acids (n-3) has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA) on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female ... ...

    Abstract Omega-3 fatty acids (n-3) has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA) on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12) or olive oil (OO = 12) over 4 weeks of training. Two measurements (pre- and post-treatment) of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post) and experimental group (FO/OO) on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004) and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003). It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players
    Keywords Fatty acids ; omega 3 ; efficiency ; decision-making ; Sports ; GV557-1198.995 ; Sports medicine ; RC1200-1245
    Subject code 796
    Language English
    Publishing date 2011-06-01T00:00:00Z
    Publisher University of Uludag
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top