LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Detection of caries lesions using a water-sensitive STIR sequence in dental MRI

    Egon Burian / Nicolas Lenhart / Tobias Greve / Jannis Bodden / Gintare Burian / Benjamin Palla / Florian Probst / Monika Probst / Meinrad Beer / Matthias Folwaczny / Julian Schwarting

    Scientific Reports, Vol 14, Iss 1, Pp 1-

    2024  Volume 9

    Abstract: Abstract In clinical practice, diagnosis of suspected carious lesions is verified by using conventional dental radiography (DR), including panoramic radiography (OPT), bitewing imaging, and dental X-ray. The aim of this study was to evaluate the use of ... ...

    Abstract Abstract In clinical practice, diagnosis of suspected carious lesions is verified by using conventional dental radiography (DR), including panoramic radiography (OPT), bitewing imaging, and dental X-ray. The aim of this study was to evaluate the use of magnetic resonance imaging (MRI) for caries visualization. Fourteen patients with clinically suspected carious lesions, verified by standardized dental examination including DR and OPT, were imaged with 3D isotropic T2-weighted STIR (short tau inversion recovery) and T1 FFE Black bone sequences. Intensities of dental caries, hard tissue and pulp were measured and calculated as aSNR (apparent signal to noise ratio) and aHTMCNR (apparent hard tissue to muscle contrast to noise ratio) in both sequences. Imaging findings were then correlated to clinical examination results. In STIR as well as in T1 FFE black bone images, aSNR and aHTMCNR was significantly higher in carious lesions than in healthy hard tissue (p < 0.001). Using water-sensitive STIR sequence allowed for detecting significantly lower aSNR and aHTMCNR in carious teeth compared to healthy teeth (p = 0.01). The use of MRI for the detection of caries is a promising imaging technique that may complement clinical exams and traditional imaging.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610 ; 616
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Role of Pial Microvasospasms and Leukocyte Plugging for Parenchymal Perfusion after Subarachnoid Hemorrhage Assessed by In Vivo Multi-Photon Microscopy

    Julian Schwarting / Kathrin Nehrkorn / Hanhan Liu / Nikolaus Plesnila / Nicole Angela Terpolilli

    International Journal of Molecular Sciences, Vol 22, Iss 8444, p

    2021  Volume 8444

    Abstract: Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. ... ...

    Abstract Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. Therefore, we used in vivo deep tissue imaging by two-photon microscopy to investigate MVSs together with the intraparenchymal microcirculation in a clinically relevant murine SAH model. Male C57BL/6 mice received a cranial window. Cerebral vessels and leukocytes were labelled with fluorescent dyes and imaged by in vivo two-photon microscopy before and three hours after SAH induced by filament perforation. After SAH, a large clot formed around the perforation site at the skull base, and blood distributed along the perivascular space of the middle cerebral artery up to the cerebral cortex. Comparing the cerebral microvasculature before and after SAH, we identified three different patterns of constrictions: pearl string, global, and bottleneck. At the same time, the volume of perfused intraparenchymal vessels and blood flow velocity in individual arterioles were significantly reduced by more than 60%. Plugging of capillaries by leukocytes was observed but infrequent. The current study demonstrates that perivascular blood is associated with spasms of pial arterioles and that these spasms result in a significant reduction in cortical perfusion after SAH. Thus, the pial microvasospasm seems to be an important mechanism by which blood in the subarachnoid space triggers cerebral ischemia after SAH. Identifying the mechanisms of pial vasospasm may therefore result in novel therapeutic options for SAH patients.
    Keywords subarachnoid hemorrhage ; microvasospasm ; leukocytes ; multi-photon microscopy ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Formation of somatosensory detour circuits mediates functional recovery following dorsal column injury

    Charlène Granier / Julian Schwarting / Evangelia Fourli / Fabian Laage-Gaupp / Alexandru A. Hennrich / Anja Schmalz / Anne Jacobi / Marta Wesolowski / Karl Klaus Conzelmann / Florence M. Bareyre

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: Abstract Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a ... ...

    Abstract Abstract Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a unilateral dorsal column lesion. We therefore investigated the basis of this recovery and focused on the plasticity of the dorsal column-medial lemniscus pathway. We show that ascending dorsal root ganglion (DRG) axons branch in the spinal grey matter and substantially increase the number of these collaterals following injury. These sensory fibers exhibit synapsin-positive varicosities, indicating their integration into spinal networks. Using a monosynaptic circuit tracing with rabies viruses injected into the cuneate nucleus, we show the presence of spinal cord neurons that provide a detour pathway to the original target area of DRG axons. Notably the number of contacts between DRG collaterals and those spinal neurons increases by more than 300% after injury. We then characterized these interneurons and showed that the lesion triggers a remodeling of the connectivity pattern. Finally, using re-lesion experiments after initial remodeling of connections, we show that these detour circuits are responsible for the recovery of tactile and proprioceptive function. Taken together our study reveals that detour circuits represent a common blueprint for axonal rewiring after injury.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top