LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: 1-C Metabolism—Serine, Glycine, Folates—In Acute Myeloid Leukemia

    Kanwal Mahmood / Ashkan Emadi

    Pharmaceuticals, Vol 14, Iss 3, p

    2021  Volume 190

    Abstract: Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Studies in hematological malignancies have shown alterations in fatty acid, folate, and amino acid metabolism pathways in ...

    Abstract Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Studies in hematological malignancies have shown alterations in fatty acid, folate, and amino acid metabolism pathways in cancer cells. One-carbon (1-C) metabolism is essential for numerous cancer cell functions, including protein and nucleic acid synthesis and maintaining cellular redox balance, and inhibition of the 1-C pathway has yielded several highly active drugs, such as methotrexate and 5-FU. Glutamine depletion has also emerged as a therapeutic approach for cancers that have demonstrated dependence on glutamine for survival. Recent studies have shown that in response to glutamine deprivation leukemia cells upregulate key enzymes in the serine biosynthesis pathway, suggesting that serine upregulation may be a targetable compensatory mechanism. These new findings may provide opportunities for novel cancer treatments.
    Keywords amino acid metabolism ; cancer therapy ; leukemia ; amino-acid-degrading enzymes ; amino acid restriction in cancer ; Medicine ; R ; Pharmacy and materia medica ; RS1-441
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis

    Michael A. Moses / Andrea L. George / Nozomi Sakakibara / Kanwal Mahmood / Roshini M. Ponnamperuma / Kathryn E. King / Wendy C. Weinberg

    International Journal of Molecular Sciences, Vol 20, Iss 14, p

    2019  Volume 3590

    Abstract: The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified ... ...

    Abstract The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
    Keywords p63 ; p53 family ; keratinocytes ; squamous carcinogenesis ; epidermal homeostasis ; epidermal morphogenesis ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top