LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Endosomal structure and APP biology are not altered in a preclinical mouse cellular model of Down syndrome

    Claudia Cannavo / Karen Cleverley / Cheryl Maduro / Paige Mumford / Dale Moulding / Elizabeth M. C. Fisher / Frances K. Wiseman

    PLoS ONE, Vol 17, Iss

    2022  Volume 5

    Abstract: Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer’s disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor ... ...

    Abstract Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer’s disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes, and changes to endosome biology occur early in Alzheimer’s disease. Here, we determine if primary mouse embryonic fibroblasts isolated from a mouse model of Down syndrome can be used to study endosome and APP cell biology. We report that in this cellular model, endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in the model, despite three copies of App.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Endosomal structure and APP biology are not altered in a preclinical mouse cellular model of Down syndrome.

    Claudia Cannavo / Karen Cleverley / Cheryl Maduro / Paige Mumford / Dale Moulding / Elizabeth M C Fisher / Frances K Wiseman

    PLoS ONE, Vol 17, Iss 5, p e

    2022  Volume 0262558

    Abstract: Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer's disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor ... ...

    Abstract Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer's disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes, and changes to endosome biology occur early in Alzheimer's disease. Here, we determine if primary mouse embryonic fibroblasts isolated from a mouse model of Down syndrome can be used to study endosome and APP cell biology. We report that in this cellular model, endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in the model, despite three copies of App.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The effects of Cstb duplication on APP/amyloid-β pathology and cathepsin B activity in a mouse model.

    Yixing Wu / Heather T Whittaker / Suzanna Noy / Karen Cleverley / Veronique Brault / Yann Herault / Elizabeth M C Fisher / Frances K Wiseman

    PLoS ONE, Vol 16, Iss 7, p e

    2021  Volume 0242236

    Abstract: People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, ... ...

    Abstract People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-β that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-β pathology in a transgenic mouse model of amyloid-β deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-β accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-β accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-β plaques or the levels of soluble or insoluble amyloid-β42, amyloid-β40, or amyloid-β38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Cognitive impairments in a Down syndrome model with abnormal hippocampal and prefrontal dynamics and cytoarchitecture

    Phillip M. Muza / Daniel Bush / Marta Pérez-González / Ines Zouhair / Karen Cleverley / Miriam L. Sopena / Rifdat Aoidi / Steven J. West / Mark Good / Victor L.J. Tybulewicz / Matthew C. Walker / Elizabeth M.C. Fisher / Pishan Chang

    iScience, Vol 26, Iss 2, Pp 106073- (2023)

    2023  

    Abstract: Summary: The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we ... ...

    Abstract Summary: The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.
    Keywords Developmental neuroscience ; Transcriptomics ; Model organism ; Science ; Q
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Genetic dissection of down syndrome-associated alterations in APP/amyloid-β biology using mouse models

    Justin L. Tosh / Elena R. Rhymes / Paige Mumford / Heather T. Whittaker / Laura J. Pulford / Sue J. Noy / Karen Cleverley / LonDownS Consortium / Matthew C. Walker / Victor L. J. Tybulewicz / Rob C. Wykes / Elizabeth M. C. Fisher / Frances K. Wiseman

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Abstract Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer’s disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid ... ...

    Abstract Abstract Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer’s disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or ‘dose’ of APP is thought to be the cause of this early-onset Alzheimer’s disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, influences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid-β aggregation and APP transgene-associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer’s disease in people who have Down syndrome.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Publisher Correction

    Justin L. Tosh / Elena R. Rhymes / Paige Mumford / Heather T. Whittaker / Laura J. Pulford / Sue J. Noy / Karen Cleverley / LonDownS Consortium / Matthew C. Walker / Victor L. J. Tybulewicz / Rob C. Wykes / Elizabeth M. C. Fisher / Frances K. Wiseman

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    Genetic dissection of down syndrome‑associated alterations in APP/amyloid‑β biology using mouse models

    2021  Volume 2

    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus

    Simone Granno / Jonathon Nixon-Abell / Daniel C. Berwick / Justin Tosh / George Heaton / Sultan Almudimeegh / Zenisha Nagda / Jean-Christophe Rain / Manuela Zanda / Vincent Plagnol / Victor L. J. Tybulewicz / Karen Cleverley / Frances K. Wiseman / Elizabeth M. C. Fisher / Kirsten Harvey

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 20

    Abstract: Abstract Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/ ...

    Abstract Abstract Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer’s disease and the ‘Tc1’ DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism. Under basal conditions, DYRK1A is a negative regulator of Wnt/β-catenin. Following pathway activation, however, DYRK1A exerts the opposite effect, increasing signalling activity. In summary, we identified downregulation of hippocampal Wnt/β-catenin signalling in DS, possibly mediated by a dose dependent effect of the chromosome 21-encoded kinase DYRK1A. Overall, we propose that dosage imbalance of the Hsa21 gene DYRK1A affects downstream Wnt target genes. Therefore, modulation of Wnt signalling may open unexplored avenues for DS and Alzheimer’s disease treatment.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2019-05-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article: C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins

    Mizielinska, Sarah / Adrian M. Isaacs / Andrew J. Nicoll / Anny Devoy / Charlotte E. Ridler / Elizabeth M. C. Fisher / Emma L. Clayton / Frances E. Norona / Ione O. C. Woollacott / Jacqueline Dols / Julian Pietrzyk / Karen Cleverley / Linda Partridge / Melissa Cabecinha / Oliver Hendrich / Pietro Fratta / Sebastian Grönke / Stuart Pickering-Brown / Teresa Niccoli /
    Thomas Moens

    Science. 2014 Sept. 5, v. 345, no. 6201

    2014  

    Abstract: Dipeptide repeat peptides on the attack Certain neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), are associated with expanded dipeptides translated from RNA transcripts of disease-associated genes (see the Perspective by West ... ...

    Abstract Dipeptide repeat peptides on the attack Certain neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), are associated with expanded dipeptides translated from RNA transcripts of disease-associated genes (see the Perspective by West and Gitler). Kwon et al. show that the peptides encoded by the expanded repeats in the C9orf72 gene interfere with the way cells make RNA and kill cells. These effects may account for how this genetic form of ALS causes disease. Working in Drosophila , Mizielinska et al. aimed to distinguish between the effects of repeat-containing RNAs and the dipeptide repeat peptides that they encode. The findings provide evidence that dipeptide repeat proteins can cause toxicity directly. Science , this issue p. 1139 and p. 1192; see also p. 1118
    Keywords amyotrophic lateral sclerosis ; dipeptides ; Drosophila ; genes ; messenger RNA ; proteins ; toxicity ; translation (genetics)
    Language English
    Dates of publication 2014-0905
    Size p. 1192-1194.
    Publishing place American Association for the Advancement of Science
    Document type Article
    ZDB-ID 128410-1
    ISSN 1095-9203 ; 0036-8075
    ISSN (online) 1095-9203
    ISSN 0036-8075
    DOI 10.1126/science.1256800
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top