LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 45

Search options

  1. Article ; Online: Reducing control noise in gravitational wave detectors with interferometric local damping of suspended optics.

    van Dongen, J / Prokhorov, L / Cooper, S J / Barton, M A / Bonilla, E / Dooley, K L / Driggers, J C / Effler, A / Holland, N A / Huddart, A / Kasprzack, M / Kissel, J S / Lantz, B / Mitchell, A L / O'Dell, J / Pele, A / Robertson, C / Mow-Lowry, C M

    The Review of scientific instruments

    2023  Volume 94, Issue 5

    Abstract: Control noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to ...

    Abstract Control noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to control the suspension resonances. We show that if we were to use HoQIs, instead of the standard shadow sensors, we could suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system. Through a cascade of effects, this will reduce the resonant cross-coupling of the suspensions, allow for improved stability for feed-forward control, and result in improved sensitivity of the detectors in the 10-20 Hz band. This analysis shows that improved local sensors, such as HoQIs, should be used in current and future detectors to improve low-frequency performance.
    Language English
    Publishing date 2023-05-16
    Publishing country United States
    Document type Journal Article
    ZDB-ID 209865-9
    ISSN 1089-7623 ; 0034-6748
    ISSN (online) 1089-7623
    ISSN 0034-6748
    DOI 10.1063/5.0144865
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Publisher's Note: "Reducing control noise in gravitational wave detectors with interferometric local damping of suspended optics" [Rev. Sci. Instrum. 94, 054501 (2023)].

    van Dongen, J / Prokhorov, L / Cooper, S J / Barton, M A / Bonilla, E / Dooley, K L / Driggers, J C / Effler, A / Holland, N A / Huddart, A / Kasprzack, M / Kissel, J S / Lantz, B / Mitchell, A L / O'Dell, J / Pele, A / Robertson, C / Mow-Lowry, C M

    The Review of scientific instruments

    2023  Volume 94, Issue 6

    Language English
    Publishing date 2023-10-20
    Publishing country United States
    Document type Published Erratum
    ZDB-ID 209865-9
    ISSN 1089-7623 ; 0034-6748
    ISSN (online) 1089-7623
    ISSN 0034-6748
    DOI 10.1063/5.0159530
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Piezo-deformable mirrors for active mode matching in advanced LIGO.

    Srivastava, Varun / Mansell, Georgia / Makarem, Camille / Noh, Minkyun / Abbott, Richard / Ballmer, Stefan / Billingsley, GariLynn / Brooks, Aidan / Cao, Huy Tuong / Fritschel, Peter / Griffith, Don / Jia, Wenxuan / Kasprzack, Marie / MacInnis, Myron / Ng, Sebastian / Sanchez, Luis / Torrie, Calum / Veitch, Peter / Matichard, Fabrice

    Optics express

    2022  Volume 30, Issue 7, Page(s) 10491–10501

    Abstract: The detectors of the laser interferometer gravitational-wave observatory (LIGO) are broadly limited by the quantum noise and rely on the injection of squeezed states of light to achieve their full sensitivity. Squeezing improvement is limited by mode ... ...

    Abstract The detectors of the laser interferometer gravitational-wave observatory (LIGO) are broadly limited by the quantum noise and rely on the injection of squeezed states of light to achieve their full sensitivity. Squeezing improvement is limited by mode mismatch between the elements of the squeezer and the interferometer. In the current LIGO detectors, there is no way to actively mitigate this mode mismatch. This paper presents a new deformable mirror for wavefront control that meets the active mode matching requirements of advanced LIGO. The active element is a piezo-electric transducer, which actuates on the radius of curvature of a 5 mm thick mirror via an axisymmetric flexure. The operating range of the deformable mirror is 120±8 mD in vacuum and an additional 200 mD adjustment range accessible out of vacuum. Combining the operating range and the adjustable static offset, it is possible to deform a flat mirror from -65 mD to -385 mD. The measured bandwidth of the actuator and driver electronics is 6.8 Hz. The scattering into higher-order modes is measured to be <0.2% over the nominal beam radius. These piezo-deformable mirrors meet the stringent noise and vacuum requirements of advanced LIGO and will be used for the next observing run (O4) to control the mode-matching between the squeezer and the interferometer.
    Language English
    Publishing date 2022-04-26
    Publishing country United States
    Document type Journal Article
    ZDB-ID 1491859-6
    ISSN 1094-4087 ; 1094-4087
    ISSN (online) 1094-4087
    ISSN 1094-4087
    DOI 10.1364/OE.445088
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article ; Online: Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    Ramette, Joshua / Kasprzack, Marie / Brooks, Aidan / Blair, Carl / Wang, Haoyu / Heintze, Matthew

    Applied optics

    2016  Volume 55, Issue 10, Page(s) 2619–2625

    Abstract: Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main ... ...

    Abstract Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.
    Language English
    Publishing date 2016--01
    Publishing country United States
    Document type Journal Article ; Research Support, U.S. Gov't, Non-P.H.S.
    ISSN 1539-4522
    ISSN (online) 1539-4522
    DOI 10.1364/AO.55.002619
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article ; Online: Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams.

    Kasprzack, Marie / Canuel, Benjamin / Cavalier, Fabien / Day, Richard / Genin, Eric / Marque, Julien / Sentenac, Daniel / Vajente, Gabriele

    Applied optics

    2013  Volume 52, Issue 12, Page(s) 2909–2916

    Abstract: The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This ... ...

    Abstract The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This moderately low-cost technology can be easily implemented and controlled thanks to the good reproducibility of the actuation. By using a flexible printed circuit board technology, we demonstrate experimentally that a device of 61 actuators in thermal contact with the back surface of a high-reflective mirror is able to correct the low-order aberrations of a laser beam at 1064 nm and could be used to optimize the mode matching into Fabry-Perot cavities.
    Language English
    Publishing date 2013-04-20
    Publishing country United States
    Document type Journal Article
    ISSN 1539-4522
    ISSN (online) 1539-4522
    DOI 10.1364/AO.52.002909
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article ; Online: Point Absorber Limits to Future Gravitational-Wave Detectors.

    Jia, Wenxuan / Yamamoto, Hiroaki / Kuns, Kevin / Effler, Anamaria / Evans, Matthew / Fritschel, Peter / Abbott, R / Adams, C / Adhikari, R X / Ananyeva, A / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Austin, C / Baer, A M / Ball, M / Ballmer, S W /
    Banagiri, S / Barker, D / Barsotti, L / Bartlett, J / Berger, B K / Betzwieser, J / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, C D / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Brooks, A F / Brown, D D / Buikema, A / Cahillane, C / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Compton, C M / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Dooley, K L / Driggers, J C / Dupej, P / Dwyer, S E / Etzel, T / Evans, T M / Feicht, J / Fernandez-Galiana, A / Frolov, V V / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Green, A C / Gustafson, E K / Gustafson, R / Hall, E D / Hanks, J / Hanson, J / Hardwick, T / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / Kasprzack, M / Kawabe, K / Kijbunchoo, N / King, P J / Kissel, J S / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Mansell, G L / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / Matichard, F / Mavalvala, N / McCarthy, R / McClelland, D E / McCormick, S / McCuller, L / McIver, J / McRae, T / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Mullavey, A / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, Richard J / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Pele, A / Penhorwood, R / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetzl, D / Schnabel, R / Schofield, R M S / Schwartz, E / Sellers, D / Shaffer, T / Sigg, D / Slagmolen, B J J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Tse, M / Urban, A L / Vajente, G / Valdes, G / Vander-Hyde, D C / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vo, T / Vorvick, C / Wade, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Whittle, C / Willke, B / Wipf, C C / Xiao, L / Yu, Hang / Yu, Haocun / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2021  Volume 127, Issue 24, Page(s) 241102

    Abstract: High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface ... ...

    Abstract High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise.
    Language English
    Publishing date 2021-12-24
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.127.241102
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article ; Online: Approaching the motional ground state of a 10-kg object.

    Whittle, Chris / Hall, Evan D / Dwyer, Sheila / Mavalvala, Nergis / Sudhir, Vivishek / Abbott, R / Ananyeva, A / Austin, C / Barsotti, L / Betzwieser, J / Blair, C D / Brooks, A F / Brown, D D / Buikema, A / Cahillane, C / Driggers, J C / Effler, A / Fernandez-Galiana, A / Fritschel, P /
    Frolov, V V / Hardwick, T / Kasprzack, M / Kawabe, K / Kijbunchoo, N / Kissel, J S / Mansell, G L / Matichard, F / McCuller, L / McRae, T / Mullavey, A / Pele, A / Schofield, R M S / Sigg, D / Tse, M / Vajente, G / Vander-Hyde, D C / Yu, Hang / Yu, Haocun / Adams, C / Adhikari, R X / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Baer, A M / Ball, M / Ballmer, S W / Banagiri, S / Barker, D / Bartlett, J / Berger, B K / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Compton, C M / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Dooley, K L / Dupej, P / Etzel, T / Evans, M / Evans, T M / Feicht, J / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Green, A C / Gustafson, E K / Gustafson, R / Hanks, J / Hanson, J / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / King, P J / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / McCarthy, R / McClelland, D E / McCormick, S / McIver, J / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, Richard J / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Penhorwood, R / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetz, D / Schnabel, R / Schwartz, E / Sellers, D / Shaffer, T / Slagmolen, B J J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Urban, A L / Valdes, G / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vo, T / Vorvick, C / Wade, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Willke, B / Wipf, C C / Xiao, L / Yamamoto, H / Zhang, L / Zucker, M E / Zweizig, J

    Science (New York, N.Y.)

    2021  Volume 372, Issue 6548, Page(s) 1333–1336

    Abstract: The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's ... ...

    Abstract The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.
    Language English
    Publishing date 2021-06-17
    Publishing country United States
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 128410-1
    ISSN 1095-9203 ; 0036-8075
    ISSN (online) 1095-9203
    ISSN 0036-8075
    DOI 10.1126/science.abh2634
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  8. Article ; Online: Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy.

    Tse, M / Yu, Haocun / Kijbunchoo, N / Fernandez-Galiana, A / Dupej, P / Barsotti, L / Blair, C D / Brown, D D / Dwyer, S E / Effler, A / Evans, M / Fritschel, P / Frolov, V V / Green, A C / Mansell, G L / Matichard, F / Mavalvala, N / McClelland, D E / McCuller, L /
    McRae, T / Miller, J / Mullavey, A / Oelker, E / Phinney, I Y / Sigg, D / Slagmolen, B J J / Vo, T / Ward, R L / Whittle, C / Abbott, R / Adams, C / Adhikari, R X / Ananyeva, A / Appert, S / Arai, K / Areeda, J S / Asali, Y / Aston, S M / Austin, C / Baer, A M / Ball, M / Ballmer, S W / Banagiri, S / Barker, D / Bartlett, J / Berger, B K / Betzwieser, J / Bhattacharjee, D / Billingsley, G / Biscans, S / Blair, R M / Bode, N / Booker, P / Bork, R / Bramley, A / Brooks, A F / Buikema, A / Cahillane, C / Cannon, K C / Chen, X / Ciobanu, A A / Clara, F / Cooper, S J / Corley, K R / Countryman, S T / Covas, P B / Coyne, D C / Datrier, L E H / Davis, D / Di Fronzo, C / Driggers, J C / Etzel, T / Evans, T M / Feicht, J / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Godwin, P / Goetz, E / Gras, S / Gray, C / Gray, R / Gupta, Anchal / Gustafson, E K / Gustafson, R / Hanks, J / Hanson, J / Hardwick, T / Hasskew, R K / Heintze, M C / Helmling-Cornell, A F / Holland, N A / Jones, J D / Kandhasamy, S / Karki, S / Kasprzack, M / Kawabe, K / King, P J / Kissel, J S / Kumar, Rahul / Landry, M / Lane, B B / Lantz, B / Laxen, M / Lecoeuche, Y K / Leviton, J / Liu, J / Lormand, M / Lundgren, A P / Macas, R / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Martynov, D V / Mason, K / Massinger, T J / McCarthy, R / McCormick, S / McIver, J / Mendell, G / Merfeld, K / Merilh, E L / Meylahn, F / Mistry, T / Mittleman, R / Moreno, G / Mow-Lowry, C M / Mozzon, S / Nelson, T J N / Nguyen, P / Nuttall, L K / Oberling, J / Oram, R J / O'Reilly, B / Osthelder, C / Ottaway, D J / Overmier, H / Palamos, J R / Parker, W / Payne, E / Pele, A / Perez, C J / Pirello, M / Radkins, H / Ramirez, K E / Richardson, J W / Riles, K / Robertson, N A / Rollins, J G / Romel, C L / Romie, J H / Ross, M P / Ryan, K / Sadecki, T / Sanchez, E J / Sanchez, L E / Saravanan, T R / Savage, R L / Schaetzl, D / Schnabel, R / Schofield, R M S / Schwartz, E / Sellers, D / Shaffer, T J / Smith, J R / Soni, S / Sorazu, B / Spencer, A P / Strain, K A / Sun, L / Szczepańczyk, M J / Thomas, M / Thomas, P / Thorne, K A / Toland, K / Torrie, C I / Traylor, G / Urban, A L / Vajente, G / Valdes, G / Vander-Hyde, D C / Veitch, P J / Venkateswara, K / Venugopalan, G / Viets, A D / Vorvick, C / Wade, M / Warner, J / Weaver, B / Weiss, R / Willke, B / Wipf, C C / Xiao, L / Yamamoto, H / Yap, M J / Yu, Hang / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2019  Volume 123, Issue 23, Page(s) 231107

    Abstract: The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves ... ...

    Abstract The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).
    Language English
    Publishing date 2019-12-23
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.123.231107
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  9. Article ; Online: Point absorbers in Advanced LIGO.

    Brooks, Aidan F / Vajente, Gabriele / Yamamoto, Hiro / Abbott, Rich / Adams, Carl / Adhikari, Rana X / Ananyeva, Alena / Appert, Stephen / Arai, Koji / Areeda, Joseph S / Asali, Yasmeen / Aston, Stuart M / Austin, Corey / Baer, Anne M / Ball, Matthew / Ballmer, Stefan W / Banagiri, Sharan / Barker, David / Barsotti, Lisa /
    Bartlett, Jeffrey / Berger, Beverly K / Betzwieser, Joseph / Bhattacharjee, Dripta / Billingsley, Garilynn / Biscans, Sebastien / Blair, Carl D / Blair, Ryan M / Bode, Nina / Booker, Phillip / Bork, Rolf / Bramley, Alyssa / Brown, Daniel D / Buikema, Aaron / Cahillane, Craig / Cannon, Kipp C / Cao, Huy Tuong / Chen, Xu / Ciobanu, Alexei A / Clara, Filiberto / Compton, Camilla / Cooper, Sam J / Corley, Kenneth R / Countryman, Stefan T / Covas, Pep B / Coyne, Dennis C / Datrier, Laurence E / Davis, Derek / Difronzo, Chiara D / Dooley, Katherine L / Driggers, Jenne C / Dupej, Peter / Dwyer, Sheila E / Effler, Anamaria / Etzel, Todd / Evans, Matthew / Evans, Tom M / Feicht, Jon / Fernandez-Galiana, Alvaro / Fritschel, Peter / Frolov, Valery V / Fulda, Paul / Fyffe, Michael / Giaime, Joe A / Giardina, Dwayne D / Godwin, Patrick / Goetz, Evan / Gras, Slawomir / Gray, Corey / Gray, Rachel / Green, Anna C / Gupta, Anchal / Gustafson, Eric K / Gustafson, Dick / Hall, Evan / Hanks, Jonathan / Hanson, Joe / Hardwick, Terra / Hasskew, Raine K / Heintze, Matthew C / Helmling-Cornell, Adrian F / Holland, Nathan A / Izmui, Kiamu / Jia, Wenxuan / Jones, Jeff D / Kandhasamy, Shivaraj / Karki, Sudarshan / Kasprzack, Marie / Kawabe, Keita / Kijbunchoo, Nutsinee / King, Peter J / Kissel, Jeffrey S / Kumar, Rahul / Landry, Michael / Lane, Benjamin B / Lantz, Brian / Laxen, Michael / Lecoeuche, Yannick K / Leviton, Jessica / Jian, Liu / Lormand, Marc / Lundgren, Andrew P / Macas, Ronaldas / Macinnis, Myron / Macleod, Duncan M / Mansell, Georgia L / Marka, Szabolcs / Marka, Zsuzsanna / Martynov, Denis V / Mason, Ken / Massinger, Thomas J / Matichard, Fabrice / Mavalvala, Nergis / McCarthy, Richard / McClelland, David E / McCormick, Scott / McCuller, Lee / McIver, Jessica / McRae, Terry / Mendell, Gregory / Merfeld, Kara / Merilh, Edmond L / Meylahn, Fabian / Mistry, Timesh / Mittleman, Richard / Moreno, Gerardo / Mow-Lowry, Conor M / Mozzon, Simone / Mullavey, Adam / Nelson, Timothy J / Nguyen, Philippe / Nuttall, Laura K / Oberling, Jason / Oram, Richard J / Osthelder, Charles / Ottaway, David J / Overmier, Harry / Palamos, Jordan R / Parker, William / Payne, Ethan / Pele, Arnaud / Penhorwood, Reilly / Perez, Carlos J / Pirello, Marc / Radkins, Hugh / Ramirez, Karla E / Richardson, Jonathan W / Riles, Keith / Robertson, Norna A / Rollins, Jameson G / Romel, Chandra L / Romie, Janeen H / Ross, Michael P / Ryan, Kyle / Sadecki, Travis / Sanchez, Eduardo J / Sanchez, Luis E / Tiruppatturrajamanikkam, Saravanan R / Savage, Richard L / Schaetzl, Dean / Schnabel, Roman / Schofield, Robert M / Schwartz, Eyal / Sellers, Danny / Shaffer, Thomas / Sigg, Daniel / Slagmolen, Bram J / Smith, Joshua R / Soni, Siddharth / Sorazu, Borja / Spencer, Andrew P / Strain, Ken A / Sun, Ling / Szczepanczyk, Marek J / Thomas, Michael / Thomas, Patrick / Thorne, Keith A / Toland, Karl / Torrie, Calum I / Traylor, Gary / Tse, Maggie / Urban, Alexander L / Valdes, Guillermo / Vander-Hyde, Daniel C / Veitch, Peter J / Venkateswara, Krishna / Venugopalan, Gautam / Viets, Aaron D / Vo, Thomas / Vorvick, Cheryl / Wade, Madeline / Ward, Robert L / Warner, Jim / Weaver, Betsy / Weiss, Rainer / Whittle, Chris / Willke, Benno / Wipf, Christopher C / Xiao, Liting / Yu, Hang / Yu, Haocun / Zhang, Liyuan / Zucker, Michael E / Zweizig, John

    Applied optics

    2021  Volume 60, Issue 13, Page(s) 4047–4063

    Abstract: Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce ... ...

    Abstract Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.
    Language English
    Publishing date 2021-05-03
    Publishing country United States
    Document type Journal Article
    ISSN 1539-4522
    ISSN (online) 1539-4522
    DOI 10.1364/AO.419689
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  10. Article ; Online: First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO.

    Blair, Carl / Gras, Slawek / Abbott, Richard / Aston, Stuart / Betzwieser, Joseph / Blair, David / DeRosa, Ryan / Evans, Matthew / Frolov, Valera / Fritschel, Peter / Grote, Hartmut / Hardwick, Terra / Liu, Jian / Lormand, Marc / Miller, John / Mullavey, Adam / O'Reilly, Brian / Zhao, Chunnong / Abbott, B P /
    Abbott, T D / Adams, C / Adhikari, R X / Anderson, S B / Ananyeva, A / Appert, S / Arai, K / Ballmer, S W / Barker, D / Barr, B / Barsotti, L / Bartlett, J / Bartos, I / Batch, J C / Bell, A S / Billingsley, G / Birch, J / Biscans, S / Biwer, C / Bork, R / Brooks, A F / Ciani, G / Clara, F / Countryman, S T / Cowart, M J / Coyne, D C / Cumming, A / Cunningham, L / Danzmann, K / Da Silva Costa, C F / Daw, E J / DeBra, D / DeSalvo, R / Dooley, K L / Doravari, S / Driggers, J C / Dwyer, S E / Effler, A / Etzel, T / Evans, T M / Factourovich, M / Fair, H / Fernández Galiana, A / Fisher, R P / Fulda, P / Fyffe, M / Giaime, J A / Giardina, K D / Goetz, E / Goetz, R / Gray, C / Gushwa, K E / Gustafson, E K / Gustafson, R / Hall, E D / Hammond, G / Hanks, J / Hanson, J / Harry, G M / Heintze, M C / Heptonstall, A W / Hough, J / Izumi, K / Jones, R / Kandhasamy, S / Karki, S / Kasprzack, M / Kaufer, S / Kawabe, K / Kijbunchoo, N / King, E J / King, P J / Kissel, J S / Korth, W Z / Kuehn, G / Landry, M / Lantz, B / Lockerbie, N A / Lundgren, A P / MacInnis, M / Macleod, D M / Márka, S / Márka, Z / Markosyan, A S / Maros, E / Martin, I W / Martynov, D V / Mason, K / Massinger, T J / Matichard, F / Mavalvala, N / McCarthy, R / McClelland, D E / McCormick, S / McIntyre, G / McIver, J / Mendell, G / Merilh, E L / Meyers, P M / Mittleman, R / Moreno, G / Mueller, G / Munch, J / Nuttall, L K / Oberling, J / Oppermann, P / Oram, Richard J / Ottaway, D J / Overmier, H / Palamos, J R / Paris, H R / Parker, W / Pele, A / Penn, S / Phelps, M / Pierro, V / Pinto, I / Principe, M / Prokhorov, L G / Puncken, O / Quetschke, V / Quintero, E A / Raab, F J / Radkins, H / Raffai, P / Reid, S / Reitze, D H / Robertson, N A / Rollins, J G / Roma, V J / Romie, J H / Rowan, S / Ryan, K / Sadecki, T / Sanchez, E J / Sandberg, V / Savage, R L / Schofield, R M S / Sellers, D / Shaddock, D A / Shaffer, T J / Shapiro, B / Shawhan, P / Shoemaker, D H / Sigg, D / Slagmolen, B J J / Smith, B / Smith, J R / Sorazu, B / Staley, A / Strain, K A / Tanner, D B / Taylor, R / Thomas, M / Thomas, P / Thorne, K A / Thrane, E / Torrie, C I / Traylor, G / Vajente, G / Valdes, G / van Veggel, A A / Vecchio, A / Veitch, P J / Venkateswara, K / Vo, T / Vorvick, C / Walker, M / Ward, R L / Warner, J / Weaver, B / Weiss, R / Weßels, P / Willke, B / Wipf, C C / Worden, J / Wu, G / Yamamoto, H / Yancey, C C / Yu, Hang / Yu, Haocun / Zhang, L / Zucker, M E / Zweizig, J

    Physical review letters

    2017  Volume 118, Issue 15, Page(s) 151102

    Abstract: Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric ...

    Abstract Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
    Language English
    Publishing date 2017-04-14
    Publishing country United States
    Document type Journal Article
    ZDB-ID 208853-8
    ISSN 1079-7114 ; 0031-9007
    ISSN (online) 1079-7114
    ISSN 0031-9007
    DOI 10.1103/PhysRevLett.118.151102
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top