LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients

    Katarzyna Tomela / Bernadeta Pietrzak / Marcin Schmidt / Andrzej Mackiewicz

    Life, Vol 10, Iss 219, p

    2020  Volume 219

    Abstract: There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed ... ...

    Abstract There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies represent a standard treatment for metastatic melanoma. Although there are remarkable curative effects in responders to ICI therapy, up to 70% of melanoma patients show resistance to this treatment. This low response rate is caused by innate as well as acquired resistance, and some aspects of treatment resistance are still unknown. Growing evidence shows that gut microbiota and bacterial metabolites, such as short-chain fatty acids (SCFAs), affect the efficacy of immunotherapy. Various bacterial species have been indicated as potential biomarkers of anti-PD-1 or anti-CTLA-4 therapy efficacy in melanoma, next to biomarkers related to molecular and genetic tumor characteristics or the host immunological response, which are detected in patients’ blood. Here, we review the current status of biomarkers of response to ICI melanoma therapies, their pre-treatment predictive values, and their utility as on-treatment monitoring tools in order to select a relevant personalized therapy on the basis of probability of the best clinical outcome.
    Keywords biomarkers ; immunotherapy ; immune checkpoint inhibitors ; gut microbiota ; melanoma ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Myeloid-Derived Suppressor Cells (MDSC) in Melanoma Patients Treated with Anti-PD-1 Immunotherapy

    Katarzyna Tomela / Bernadeta Pietrzak / Łukasz Galus / Jacek Mackiewicz / Marcin Schmidt / Andrzej Adam Mackiewicz / Mariusz Kaczmarek

    Cells, Vol 12, Iss 789, p

    2023  Volume 789

    Abstract: Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. ... ...

    Abstract Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. In a retrospective study, blood probes of 46 advanced melanoma patients were analysed before the first administration of anti-PD-1 immunotherapy and in the third month of treatment for MDSC, immature monocytic (ImMC), monocytic MDSC (MoMDSC) and granulocytic MDSC (GrMDSC) by multi-channel flow cytometry. Cell frequencies were correlated with response to immunotherapy, progression-free survival (PFS) and lactate dehydrogenase (LDH) serum level. Responders to anti-PD-1 therapy had higher MoMDSC levels (4.1 ± 1.2%) compared to non-responders (3.0 ± 1.2%) ( p = 0.0333) before the first administration of anti-PD-1. No significant changes in MDSCs frequencies were observed in the groups of patients before and in the third month of therapy. The cut-off values of MDSCs, MoMDSCs, GrMDSCs and ImMCs for favourable 2- and 3-year PFS were established. Elevated LDH level is a negative prognostic factor of response to the treatment and is related to an elevated ratio of GrMDSCs and ImMCs level compared to patients’ LDH level below the cut-off. Our data may provide a new perspective for more careful consideration of MDSCs, and specially MoMDSCs, as a tool for monitoring the immune status of melanoma patients. Changes in MDSC levels may have a potential prognostic value, however a correlation with other parameters must be established.
    Keywords melanoma ; immunotherapy ; anty-PD-1 ; MDSC ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Influence of TGFBR2 , TGFB3 , DNMT1 , and DNMT3A Knockdowns on CTGF, TGFBR2, and DNMT3A in Neonatal and Adult Human Dermal Fibroblasts Cell Lines

    Katarzyna Tomela / Justyna A. Karolak / Barbara Ginter-Matuszewska / Michal Kabza / Marzena Gajecka

    Current Issues in Molecular Biology, Vol 43, Iss 23, Pp 276-

    2021  Volume 285

    Abstract: Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-β signaling, which regulates tissue homeostasis ... ...

    Abstract Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-β signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-β signaling and related molecular pathways at distinct developmental stages, we silenced the expression of TGFB1 , TGFB3 , TGFBR2 , CTGF , DNMT1 , and DNMT3A in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method. Through Western blot, we analyzed the effects of the knockdowns of these genes on the level of the CTGF, TGFBR2, and DNMT3A proteins in both cell lines. In the in vitro assays, we observed that CTGF level was decreased after knockdown of DNMT1 in HDF-N but not in HDF-A. Similarly, the level of DNMT3A was decreased only in HDF-N after silencing of TGFBR2, TGFB3 , or DNMT1 . TGFBR2 level was lower in HDF-N after knockdown of TGFB3 , DNMT1 , or DNMT3A, but it was higher in HDF-A after TGFB1 silencing. The reduction of TGFBR2 after silencing of DNMT3A and vice versa in neonatal cells only suggests the developmental stage-specific interactions between these two genes. However, additional studies are needed to explain the dependencies between analyzed proteins.
    Keywords TGFB1 ; TGFB2 ; TGFB3 ; TGFBR2 ; CTGF ; DNMT3A ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells

    Bernadeta Pietrzak / Katarzyna Tomela / Agnieszka Olejnik-Schmidt / Andrzej Mackiewicz / Marcin Schmidt

    International Journal of Molecular Sciences, Vol 21, Iss 9254, p

    2020  Volume 9254

    Abstract: Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into ... ...

    Abstract Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.
    Keywords secretory immunoglobulin A ; gut ; microbiota ; immune homeostasis ; mucosal secretions ; tolerance ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: The standardisation of the approach to metagenomic human gut analysis

    Natalia Szóstak / Agata Szymanek / Jan Havránek / Katarzyna Tomela / Magdalena Rakoczy / Anna Samelak-Czajka / Marcin Schmidt / Marek Figlerowicz / Jan Majta / Kaja Milanowska-Zabel / Luiza Handschuh / Anna Philips

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    from sample collection to microbiome profiling

    2022  Volume 21

    Abstract: Abstract In recent years, the number of metagenomic studies increased significantly. Wide range of factors, including the tremendous community complexity and variability, is contributing to the challenge in reliable microbiome community profiling. Many ... ...

    Abstract Abstract In recent years, the number of metagenomic studies increased significantly. Wide range of factors, including the tremendous community complexity and variability, is contributing to the challenge in reliable microbiome community profiling. Many approaches have been proposed to overcome these problems making hardly possible to compare results of different studies. The significant differences between procedures used in metagenomic research are reflected in a variation of the obtained results. This calls for the need for standardisation of the procedure, to reduce the confounding factors originating from DNA isolation, sequencing and bioinformatics analyses in order to ensure that the differences in microbiome composition are of a true biological origin. Although the best practices for metagenomics studies have been the topic of several publications and the main aim of the International Human Microbiome Standard (IHMS) project, standardisation of the procedure for generating and analysing metagenomic data is still far from being achieved. To highlight the difficulties in the standardisation of metagenomics methods, we thoroughly examined each step of the analysis of the human gut microbiome. We tested the DNA isolation procedure, preparation of NGS libraries for next-generation sequencing, and bioinformatics analysis, aimed at identifying microbial taxa. We showed that the homogenisation time is the leading factor impacting sample diversity, with the recommendation for a shorter homogenisation time (10 min). Ten minutes of homogenisation allows for better reflection of the bacteria gram-positive/gram-negative ratio, and the obtained results are the least heterogenous in terms of beta-diversity of samples microbial composition. Besides increasing the homogenisation time, we observed further potential impact of the library preparation kit on the gut microbiome profiling. Moreover, our analysis revealed that the choice of the library preparation kit influences the reproducibility of the results, which is an ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 306
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Further evaluation of differential expression of keratoconus candidate genes in human corneas

    Justyna A. Karolak / Barbara Ginter-Matuszewska / Katarzyna Tomela / Michal Kabza / Dorota M. Nowak-Malczewska / Malgorzata Rydzanicz / Piotr Polakowski / Jacek P. Szaflik / Marzena Gajecka

    PeerJ, Vol 8, p e

    2020  Volume 9793

    Abstract: Background Keratoconus (KTCN) is a progressive eye disease, characterized by changes in the shape and thickness of the cornea that results in loss of visual acuity. While numerous KTCN candidate genes have been identified, the genetic etiology of the ... ...

    Abstract Background Keratoconus (KTCN) is a progressive eye disease, characterized by changes in the shape and thickness of the cornea that results in loss of visual acuity. While numerous KTCN candidate genes have been identified, the genetic etiology of the disease remains undetermined. To further investigate and verify the contribution of particular genetic factors to KTCN, we assessed 45 candidate genes previously indicated as involved in KTCN etiology based on transcriptomic and genomic data. Methods The RealTime ready Custom Panel, covering 45 KTCN candidate genes and two reference transcripts, has been designed. Then, the expression profiles have been assessed using the RT-qPCR assay in six KTCN and six non-KTCN human corneas, obtained from individuals undergoing a penetrating keratoplasty procedure. Results In total, 35 genes exhibiting differential expression between KTCN and non-KTCN corneas have been identified. Among these genes were ones linked to the extracellular matrix formation, including collagen synthesis or the TGF-β, Hippo, and Wnt signaling pathways. The most downregulated transcripts in KTCN corneas were CTGF, TGFB3, ZNF469, COL5A2, SMAD7, and SPARC, while TGFBI and SLC4A11 were the most upregulated ones. Hierarchical clustering of expression profiles demonstrated almost clear separation between KTCN and non-KTCN corneas. The gene expression levels determined using RT-qPCR showed a strong correlation with previous RNA sequencing (RNA-Seq) results. Conclusions A strong correlation between RT-qPCR and earlier RNA-Seq data confirms the possible involvement of genes from collagen synthesis and the TGF-β, Hippo, and Wnt signaling pathways in KTCN etiology. Our data also revealed altered expression of several genes, such as LOX, SPARC, and ZNF469, in which single nucleotide variants have been frequently identified in KTCN. These findings further highlight the heterogeneous nature of KTCN.
    Keywords Gene expression ; TGF-β pathway ; Wnt signaling ; Hippo signaling ; CTGF ; ZNF469 ; Medicine ; R ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2020-08-01T00:00:00Z
    Publisher PeerJ Inc.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top