LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Role of Pial Microvasospasms and Leukocyte Plugging for Parenchymal Perfusion after Subarachnoid Hemorrhage Assessed by In Vivo Multi-Photon Microscopy

Julian Schwarting / Kathrin Nehrkorn / Hanhan Liu / Nikolaus Plesnila / Nicole Angela Terpolilli

International Journal of Molecular Sciences, Vol 22, Iss 8444, p

2021  Volume 8444

Abstract: Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. ... ...

Abstract Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. Therefore, we used in vivo deep tissue imaging by two-photon microscopy to investigate MVSs together with the intraparenchymal microcirculation in a clinically relevant murine SAH model. Male C57BL/6 mice received a cranial window. Cerebral vessels and leukocytes were labelled with fluorescent dyes and imaged by in vivo two-photon microscopy before and three hours after SAH induced by filament perforation. After SAH, a large clot formed around the perforation site at the skull base, and blood distributed along the perivascular space of the middle cerebral artery up to the cerebral cortex. Comparing the cerebral microvasculature before and after SAH, we identified three different patterns of constrictions: pearl string, global, and bottleneck. At the same time, the volume of perfused intraparenchymal vessels and blood flow velocity in individual arterioles were significantly reduced by more than 60%. Plugging of capillaries by leukocytes was observed but infrequent. The current study demonstrates that perivascular blood is associated with spasms of pial arterioles and that these spasms result in a significant reduction in cortical perfusion after SAH. Thus, the pial microvasospasm seems to be an important mechanism by which blood in the subarachnoid space triggers cerebral ischemia after SAH. Identifying the mechanisms of pial vasospasm may therefore result in novel therapeutic options for SAH patients.
Keywords subarachnoid hemorrhage ; microvasospasm ; leukocytes ; multi-photon microscopy ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
Subject code 610
Language English
Publishing date 2021-08-01T00:00:00Z
Publisher MDPI AG
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top