LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 17

Search options

  1. Article ; Online: Genomic control of inflammation in experimental atopic dermatitis

    Yan Liu / Jozef Zienkiewicz / Huan Qiao / Katherine N. Gibson-Corley / Kelli L. Boyd / Ruth Ann Veach / Jacek Hawiger

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 11

    Abstract: Abstract Atopic Dermatitis (AD) or eczema, a recurrent allergic inflammation of the skin, afflicts 10–20% of children and 5% adults of all racial and ethnic groups globally. We report a new topical treatment of AD by a Nuclear Transport Checkpoint ... ...

    Abstract Abstract Atopic Dermatitis (AD) or eczema, a recurrent allergic inflammation of the skin, afflicts 10–20% of children and 5% adults of all racial and ethnic groups globally. We report a new topical treatment of AD by a Nuclear Transport Checkpoint Inhibitor (NTCI), which targets two nuclear transport shuttles, importin α5 and importin β1. In the preclinical model of AD, induced by the active vitamin D3 analog MC903 (calcipotriol), NTCI suppressed the expression of keratinocyte-derived cytokine, Thymic Stromal Lymphopoietin (TSLP), the key gene in AD development. Moreover, the genes encoding mediators of TH2 response, IL-4 and its receptor IL-4Rα were also silenced together with the genes encoding cytokines IL-1β, IL-6, IL-13, IL-23α, IL-33, IFN-γ, GM-CSF, VEGF A, the chemokines RANTES and IL-8, and intracellular signal transducers COX-2 and iNOS. Consequently, NTCI suppressed skin infiltration by inflammatory cells (eosinophils, macrophages, and CD4 + T lymphocytes), and reduced MC903-evoked proliferation of Ki-67-positive cells. Thus, we highlight the mechanism of action and the potential utility of topical NTCI for treatment of AD undergoing Phase 1/2 clinical trial (AMTX-100 CF, NCT04313400).
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles

    Yan Liu / Jozef Zienkiewicz / Kelli L. Boyd / Taylor E. Smith / Zhi-Qi Xu / Jacek Hawiger

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 17

    Abstract: Abstract Hyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation ... ...

    Abstract Abstract Hyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation caused by pathogen-derived inducer, LPS. We demonstrate that hyperlipidemic animals succumbed to a non-lethal dose of LPS whereas normolipidemic controls survived. Strikingly, survival of hyperlipidemic animals was restored when the nuclear import of stress-responsive transcription factors (SRTFs), Sterol Regulatory Element-Binding Proteins (SREBPs), and Carbohydrate-Responsive Element-Binding Proteins (ChREBPs) was impeded by targeting the nuclear transport checkpoint with cell-penetrating, biselective nuclear transport modifier (NTM) peptide. Furthermore, the burst of proinflammatory cytokines and chemokines, microvascular endothelial injury in the liver, lungs, heart, and kidneys, and trafficking of inflammatory cells were also suppressed. To dissect the role of nuclear transport signaling pathways we designed and developed importin-selective NTM peptides. Selective targeting of the importin α5, ferrying SRTFs and ChREBPs, protected 70–100% hyperlipidemic animals. Targeting importin β1, that transports SREBPs, was only effective after 3-week treatment that lowered blood triglycerides, cholesterol, glucose, and averted fatty liver. Thus, the mechanism of hyperlipidemic hypersensitivity to lethal microbial inflammation depends on metabolic and proinflammatory transcription factors mobilization, which can be counteracted by targeting the nuclear transport checkpoint.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Broad-spectrum suppression of bacterial pneumonia by aminoglycoside-propagated Acinetobacter baumannii.

    M Indriati Hood-Pishchany / Ly Pham / Christiaan D Wijers / William J Burns / Kelli L Boyd / Lauren D Palmer / Eric P Skaar / Michael J Noto

    PLoS Pathogens, Vol 16, Iss 3, p e

    2020  Volume 1008374

    Abstract: Antimicrobial resistance is increasing in pathogenic bacteria. Yet, the effect of antibiotic exposure on resistant bacteria has been underexplored and may affect pathogenesis. Here we describe the discovery that propagation of the human pathogen ... ...

    Abstract Antimicrobial resistance is increasing in pathogenic bacteria. Yet, the effect of antibiotic exposure on resistant bacteria has been underexplored and may affect pathogenesis. Here we describe the discovery that propagation of the human pathogen Acinetobacter baumannii in an aminoglycoside antibiotic results in alterations to the bacterium that interact with lung innate immunity resulting in enhanced bacterial clearance. Co-inoculation of mice with A. baumannii grown in the presence and absence of the aminoglycoside, kanamycin, induces enhanced clearance of a non-kanamycin-propagated strain. This finding can be replicated when kanamycin-propagated A. baumannii is killed prior to co-inoculation of mice, indicating the enhanced bacterial clearance results from interactions with innate host defenses in the lung. Infection with kanamycin-propagated A. baumannii alters the kinetics of phagocyte recruitment to the lung and reduces pro- and anti-inflammatory cytokine and chemokine production in the lung and blood. This culminates in reduced histopathologic evidence of lung injury during infection despite enhanced bacterial clearance. Further, the antibacterial response induced by killed aminoglycoside-propagated A. baumannii enhances the clearance of multiple clinically relevant Gram-negative pathogens from the lungs of infected mice. Together, these findings exemplify cooperation between antibiotics and the host immune system that affords protection against multiple antibiotic-resistant bacterial pathogens. Further, these findings highlight the potential for the development of a broad-spectrum therapeutic that exploits a similar mechanism to that described here and acts as an innate immunity modulator.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 630
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles.

    Ruth Ann Veach / Yan Liu / Jozef Zienkiewicz / Lukasz S Wylezinski / Kelli L Boyd / James L Wynn / Jacek Hawiger

    PLoS ONE, Vol 12, Iss 6, p e

    2017  Volume 0179468

    Abstract: The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple ... ...

    Abstract The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple organ failure in sepsis are attributed to a "genomic storm" resulting from changes in microbial and host genomes encoding virulence factors and endogenous inflammatory mediators, respectively. This storm is mediated by stress-responsive transcription factors that are ferried to the nucleus by nuclear transport shuttles importins/karyopherins. We studied the impact of simultaneously targeting two of these shuttles, importin alpha 5 (Imp α5) and importin beta 1 (Imp β1), with a cell-penetrating Nuclear Transport Modifier (NTM) in a mouse model of polymicrobial sepsis. NTM reduced nuclear import of stress-responsive transcription factors nuclear factor kappa B, signal transducer and activator of transcription 1 alpha, and activator protein 1 in liver, which was also protected from sepsis-associated metabolic changes. Strikingly, NTM without antimicrobial therapy improved bacterial clearance in blood, spleen, and lungs, wherein a 700-fold reduction in bacterial burden was achieved while production of proinflammatory cytokines and chemokines in blood plasma was suppressed. Furthermore, NTM significantly improved thrombocytopenia, a prominent sign of microvascular injury in sepsis, inhibited neutrophil infiltration in the liver, decreased L-selectin, and normalized plasma levels of E-selectin and P-selectin, indicating reduced microvascular injury. Importantly, NTM combined with antimicrobial therapy extended the median time to death from 42 to 83 hours and increased survival from 30% to 55% (p = 0.022) as compared to antimicrobial therapy alone. This study documents the fundamental role of nuclear signaling mediated by Imp α5 and Imp β1 in the mechanism of polymicrobial sepsis and highlights the potential for targeting nuclear transport as an adjunctive therapy in sepsis ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article: Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR−/− mice by suppressing fatty acid desaturases

    Njoroge, Sarah W / Adam C. Seegmiller / Kelli L. Boyd / Michael Laposata

    Journal of nutritional biochemistry. 2015 Jan., v. 26

    2015  

    Abstract: Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to ... ...

    Abstract Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR−/− knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients.
    Keywords cystic fibrosis ; dietary supplements ; docosahexaenoic acid ; eicosapentaenoic acid ; genes ; ileum ; in vitro studies ; in vivo studies ; knockout mutants ; liver ; long chain polyunsaturated fatty acids ; metabolism ; mice ; models ; mucus ; omega-3 fatty acids ; pancreas ; pathophysiology ; patients ; stearoyl-CoA desaturase ; triacylglycerols
    Language English
    Dates of publication 2015-01
    Size p. 36-43.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 1014929-6
    ISSN 1873-4847 ; 0955-2863
    ISSN (online) 1873-4847
    ISSN 0955-2863
    DOI 10.1016/j.jnutbio.2014.09.001
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  6. Article ; Online: Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptor−/− Mice Improves Indices of Cardiometabolic Disease

    Linda S. May-Zhang / Zhongyi Chen / Noura S. Dosoky / Patricia G. Yancey / Kelli L. Boyd / Alyssa H. Hasty / MacRae F. Linton / Sean S. Davies

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Abstract Obesity increases the risk for cardiometabolic diseases. N-acyl phosphatidylethanolamines (NAPEs) are precursors of N-acylethanolamides, which are endogenous lipid satiety factors. Incorporating engineered bacteria expressing NAPEs into the gut ... ...

    Abstract Abstract Obesity increases the risk for cardiometabolic diseases. N-acyl phosphatidylethanolamines (NAPEs) are precursors of N-acylethanolamides, which are endogenous lipid satiety factors. Incorporating engineered bacteria expressing NAPEs into the gut microbiota retards development of diet induced obesity in wild-type mice. Because NAPEs can also exert anti-inflammatory effects, we hypothesized that administering NAPE-expressing bacteria to low-density lipoprotein receptor (Ldlr)−/− mice fed a Western diet would improve various indices of cardiometabolic disease manifested by these mice. NAPE-expressing E. coli Nissle 1917 (pNAPE-EcN), control Nissle 1917 (pEcN), or vehicle (veh) were given via drinking water to Ldlr −/− mice for 12 weeks. Compared to pEcN or veh treatment, pNAPE-EcN significantly reduced body weight and adiposity, hepatic triglycerides, fatty acid synthesis genes, and increased expression of fatty acid oxidation genes. pNAPE-EcN also significantly reduced markers for hepatic inflammation and early signs of fibrotic development. Serum cholesterol was reduced with pNAPE-EcN, but atherosclerotic lesion size showed only a non-significant trend for reduction. However, pNAPE-EcN treatment reduced lesion necrosis by 69% indicating an effect on preventing macrophage inflammatory death. Our results suggest that incorporation of NAPE expressing bacteria into the gut microbiota can potentially serve as an adjuvant therapy to retard development of cardiometabolic disease.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion

    Gabriela L. Santos Guasch / J Scott Beeler / Clayton B. Marshall / Timothy M. Shaver / Quanhu Sheng / Kimberly N. Johnson / Kelli L. Boyd / Bryan J. Venters / Rebecca S. Cook / Jennifer A. Pietenpol

    iScience, Vol 8, Iss , Pp 236-

    2018  Volume 249

    Abstract: Summary: We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary ... ...

    Abstract Summary: We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs. Through modulation of p73 expression in murine granulosa cells and transformed cell lines, followed by RNA-seq and chromatin immunoprecipitation sequencing, we discovered p73-dependent regulation of a gene set necessary for cell adhesion and migration and components of the focimatrix (focal intra-epithelial matrix), a basal lamina between granulosa cells that promotes follicle maturation. In summary, p73 is essential for ovarian folliculogenesis and functions as a key regulator of a gene network involved in cell-to-cell adhesion and migration. : Molecular Network; Functional Aspects of Cell Biology; Developmental Biology; Omics Subject Areas: Molecular Network, Functional Aspects of Cell Biology, Developmental Biology, Omics
    Keywords Science ; Q
    Subject code 571
    Language English
    Publishing date 2018-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Rapidly fatal pneumonitis from immunotherapy and concurrent SARS-CoV-2 infection in a patient with newly diagnosed lung cancer

    Christine M. Lovly / Kelli L. Boyd / Paula I. Gonzalez-Ericsson / Cindy L. Lowe / Hunter M. Brown / Robert D. Hoffman / Brent C. Sterling / Meghan E. Kapp / Douglas B. Johnson / Prasad R. Kopparapu / Wade T. Iams / Melissa A. Warren / Michael J. Noto / Brian I. Rini / Madan Jagasia / Suman R. Das / Justin M. Balko

    Abstract: Immune checkpoint inhibitors (ICIs) are used for the treatment of numerous cancers, but risks associated with ICI-therapy during the COVID-19 pandemic are poorly understood. We report a case of acute lung injury in a lung cancer patient initially treated ...

    Abstract Immune checkpoint inhibitors (ICIs) are used for the treatment of numerous cancers, but risks associated with ICI-therapy during the COVID-19 pandemic are poorly understood. We report a case of acute lung injury in a lung cancer patient initially treated for ICI-pneumonitis and later found to have concurrent SARS-CoV-2 infection. Post-mortem analyses revealed diffuse alveolar damage in both the acute and organizing phases, with a predominantly CD68+ inflammatory infiltrate. Serum was positive for anti-SARS-CoV-2 IgG, suggesting that viral infection predated administration of ICI-therapy and may have contributed to a more fulminant clinical presentation. These data suggest the need for routine SARS-CoV-2 testing in cancer patients, where clinical and radiographic evaluations may be non-specific.
    Keywords covid19
    Publisher medrxiv
    Document type Article ; Online
    DOI 10.1101/2020.04.29.20085738
    Database COVID19

    Kategorien

  9. Article ; Online: Genetic interaction between mutations in c-Myb and the KIX domains of CBP and p300 affects multiple blood cell lineages and influences both gene activation and repression.

    Lawryn H Kasper / Tomofusa Fukuyama / Stephanie Lerach / Yunchao Chang / Wu Xu / Song Wu / Kelli L Boyd / Paul K Brindle

    PLoS ONE, Vol 8, Iss 12, p e

    2013  Volume 82684

    Abstract: Adult blood cell production or definitive hematopoiesis requires the transcription factor c-Myb. The closely related KAT3 histone acetyltransferases CBP (CREBBP) and p300 (EP300) bind c-Myb through their KIX domains and mice homozygous for a p300 KIX ... ...

    Abstract Adult blood cell production or definitive hematopoiesis requires the transcription factor c-Myb. The closely related KAT3 histone acetyltransferases CBP (CREBBP) and p300 (EP300) bind c-Myb through their KIX domains and mice homozygous for a p300 KIX domain mutation exhibit multiple blood defects. Perplexingly, mice homozygous for the same KIX domain mutation in CBP have normal blood. Here we test the hypothesis that the CBP KIX domain contributes subordinately to hematopoiesis via a genetic interaction with c-Myb. We assessed hematopoiesis in mice bearing compound mutations of c-Myb and/or the KIX domains of CBP and p300, and measured the effect of KIX domain mutations on c-Myb-dependent gene expression. We found that in the context of a p300 KIX mutation, the CBP KIX domain mutation affects platelets, B cells, T cells, and red cells. Gene interaction (epistasis) analysis provides mechanistic evidence that blood defects in KIX mutant mice are consistent with reduced c-Myb and KIX interaction. Lastly, we demonstrated that the CBP and p300 KIX domains contribute to both c-Myb-dependent gene activation and repression. Together these results suggest that the KIX domains of CBP, and especially p300, are principal mediators of c-Myb-dependent gene activation and repression that is required for definitive hematopoiesis.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: A Distinct Lung-Interstitium-Resident Memory CD8+ T Cell Subset Confers Enhanced Protection to Lower Respiratory Tract Infection

    Pavlo Gilchuk / Timothy M. Hill / Clifford Guy / Sean R. McMaster / Kelli L. Boyd / Whitney A. Rabacal / Pengcheng Lu / Yu Shyr / Jacob E. Kohlmeier / Eric Sebzda / Douglas R. Green / Sebastian Joyce

    Cell Reports, Vol 16, Iss 7, Pp 1800-

    2016  Volume 1809

    Abstract: The nature and anatomic location of the protective memory CD8+ T cell subset induced by intranasal vaccination remain poorly understood. We developed a vaccination model to assess the anatomic location of protective memory CD8+ T cells and their role in ... ...

    Abstract The nature and anatomic location of the protective memory CD8+ T cell subset induced by intranasal vaccination remain poorly understood. We developed a vaccination model to assess the anatomic location of protective memory CD8+ T cells and their role in lower airway infections. Memory CD8+ T cells elicited by local intranasal, but not systemic, vaccination with an engineered non-replicative CD8+ T cell-targeted antigen confer enhanced protection to a lethal respiratory viral challenge. This protection depends on a distinct CXCR3LO resident memory CD8+ T (Trm) cell population that preferentially localizes to the pulmonary interstitium. Because they are positioned close to the mucosa, where infection occurs, interstitial Trm cells act before inflammation can recruit circulating memory CD8+ T cells into the lung tissue. This results in a local protective immune response as early as 1 day post-infection. Hence, vaccine strategies that induce lung interstitial Trm cells may confer better protection against respiratory pathogens.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2016-08-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top