LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 24

Search options

  1. Article ; Online: Hyperosmotic Stress Induces Phosphorylation of CERT and Enhances Its Tethering throughout the Endoplasmic Reticulum

    Kentaro Shimasaki / Keigo Kumagai / Shota Sakai / Toshiyuki Yamaji / Kentaro Hanada

    International Journal of Molecular Sciences, Vol 23, Iss 4025, p

    2022  Volume 4025

    Abstract: The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: ... ...

    Abstract The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: multiple phosphorylations in a serine-repeat motif (SRM) and phosphorylation of serine 315 residue (S315). Pharmacological inhibition of SM biosynthesis results in an increase in SRM-dephosphorylated CERT, which serves as an activated form, and an enhanced phosphorylation of S315, which augments the binding of CERT to ER-resident VAMP-associated protein (VAP), inducing the full activation of CERT to operate at the ER–Golgi membrane contact sites (MCSs). However, it remains unclear whether the two phosphorylation-dependent regulatory events always occur coordinately. Here, we describe that hyperosmotic stress induces S315 phosphorylation without affecting the SRM-phosphorylation state. Under hyperosmotic conditions, the binding of CERT with VAP-A is enhanced in an S315 phosphorylation-dependent manner, and this increased binding occurs throughout the ER rather than restrictedly at the ER–Golgi MCSs. Moreover, we found that de novo synthesis of SM with very-long acyl chains preferentially increases via a CERT-independent mechanism under hyperosmotic-stressed cells, providing an insight into a CERT-independent ceramide transport pathway for de novo synthesis of SM.
    Keywords lipid transfer protein ; regulation ; sphingomyelin ; VAP ; membrane contact sites ; very-long-chain ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 500
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Compartmentalization of casein kinase 1 γ CSNK1G controls the intracellular trafficking of ceramide

    Asako Goto / Shota Sakai / Aya Mizuike / Toshiyuki Yamaji / Kentaro Hanada

    iScience, Vol 25, Iss 7, Pp 104624- (2022)

    2022  

    Abstract: Summary: Casein kinase 1 γ (CK1G) is involved in the regulation of various cellular functions. For instance, the ceramide transport protein (CERT), which delivers ceramide to the Golgi apparatus for the synthesis of sphingomyelin (SM), is inactivated ... ...

    Abstract Summary: Casein kinase 1 γ (CK1G) is involved in the regulation of various cellular functions. For instance, the ceramide transport protein (CERT), which delivers ceramide to the Golgi apparatus for the synthesis of sphingomyelin (SM), is inactivated when it receives multiple phosphorylation by CK1G. Using human genome-wide gene disruption screening with an SM-binding cytolysin, we found that loss of the C-terminal region of CK1G3 rendered the kinase hyperactive in cells. Deletion of the C-terminal 20 amino acids or mutation of cysteine residues expected to be palmitoylated sites redistributed CK1G3 from cytoplasmic punctate compartments to the nucleocytoplasm. Wild-type CK1G3 exhibited a similar redistribution in the presence of 2-bromopalmitate, a protein palmitoylation inhibitor. Expression of C-terminal mutated CK1G1/2/3 similarly induced the multiple phosphorylation of the CERT SRM, thereby down-regulating de novo SM synthesis. These findings revealed that CK1Gs are regulated by a compartmentalization-based mechanism to access substrates present in specific intracellular organelles.
    Keywords Biological sciences ; Cell biology ; Functional aspects of cell biology ; Science ; Q
    Language English
    Publishing date 2022-07-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Sphingolipid Metabolism at the ER-Golgi Contact Zone and Its Impact on Membrane Trafficking

    Asako Goto / Aya Mizuike / Kentaro Hanada

    Contact, Vol

    2020  Volume 3

    Abstract: Proteins and lipids represent the two major constituents of biological membranes. Different organelles have different lipid compositions, which may be crucial for the execution and control of various organelle-specific functions. The interorganellar ... ...

    Abstract Proteins and lipids represent the two major constituents of biological membranes. Different organelles have different lipid compositions, which may be crucial for the execution and control of various organelle-specific functions. The interorganellar transport of lipids is dominated by mechanisms that are distinct from the vesicular mechanisms that underlie the interorganellar transport of proteins. Lipid transfer proteins (LTPs) efficiently and accurately mediate the trafficking of membrane lipids at the interfaces between different organelles. In this review, which focuses on sphingolipids, we describe the coordinated synthesis and transfer of lipids that occur at the endoplasmic reticulum (ER)-Golgi apparatus contact zones and discuss the impacts of lipid metabolism on membrane trafficking from the trans -Golgi network (TGN).
    Keywords Biology (General) ; QH301-705.5 ; Biochemistry ; QD415-436
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher SAGE Publishing
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Identification of SYS1 as a Host Factor Required for Shiga Toxin-Mediated Cytotoxicity in Vero Cells

    Chisato Sakuma / Tsuyoshi Sekizuka / Makoto Kuroda / Kentaro Hanada / Toshiyuki Yamaji

    International Journal of Molecular Sciences, Vol 22, Iss 4936, p

    2021  Volume 4936

    Abstract: Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli . The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, ... ...

    Abstract Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli . The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, we performed a loss-of-function screen in HeLa cells using a human CRISPR knockout (KO) library and identified various host genes required for STx-induced cell death. To determine whether this library targeted to the human genome is applicable to non-human primate cells and to identify previously unrecognized factors crucial for STx-induced cell death, we herein performed a similar screen in the African green monkey kidney-derived Vero C1008 subline. Many genes relevant to metabolic enzymes and membrane trafficking were enriched, although the number of enriched genes was less than that obtained in the screening for HeLa cells. Of note, several genes that had not been enriched in the previous screening were enriched: one of these genes was SYS1 , which encodes a multi-spanning membrane protein in the Golgi apparatus. In SYS1 KO Vero cells, expression of Gb3 and sphingomyelin was decreased, while that of glucosylceramide and lactosylceramide was increased. In addition, loss of SYS1 inhibited the biosynthesis of protein glycans, deformed the Golgi apparatus, and perturbed the localization of trans -Golgi network protein (TGN) 46. These results indicate that the human CRISPR KO library is applicable to Vero cell lines, and SYS1 has a widespread effect on glycan biosynthesis via regulation of intra-Golgi and endosome–TGN retrograde transports.
    Keywords glycosphingolipid ; Vero ; CRISPR/CAS9 ; genome-wide screening ; Shiga toxin ; SYS1 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 572
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Involvement of a Cluster of Basic Amino Acids in Phosphorylation-Dependent Functional Repression of the Ceramide Transport Protein CERT

    Asako Goto / Daichi Egawa / Nario Tomishige / Toshiyuki Yamaji / Kentaro Shimasaki / Keigo Kumagai / Kentaro Hanada

    International Journal of Molecular Sciences, Vol 23, Iss 8576, p

    2022  Volume 8576

    Abstract: Ceramide transport protein (CERT) mediates ceramide transfer from the endoplasmic reticulum to the Golgi for sphingomyelin (SM) biosynthesis. CERT is inactivated by multiple phosphorylation at the serine-repeat motif (SRM), and mutations that impair the ... ...

    Abstract Ceramide transport protein (CERT) mediates ceramide transfer from the endoplasmic reticulum to the Golgi for sphingomyelin (SM) biosynthesis. CERT is inactivated by multiple phosphorylation at the serine-repeat motif (SRM), and mutations that impair the SRM phosphorylation are associated with a group of inherited intellectual disorders in humans. It has been suggested that the N -terminal phosphatidylinositol 4-monophosphate [PtdIns(4)P] binding domain and the C -terminal ceramide-transfer domain of CERT physically interfere with each other in the SRM phosphorylated state, thereby repressing the function of CERT; however, it remains unclear which regions in CERT are involved in the SRM phosphorylation-dependent repression of CERT. Here, we identified a previously uncharacterized cluster of lysine/arginine residues that were predicted to be located on the outer surface of a probable coiled-coil fold in CERT. Substitutions of the basic amino acids in the cluster with alanine released the SRM-dependent repression of CERT activities, i.e., the synthesis of SM, PtdIns(4)P-binding, vesicle-associated membrane protein-associated protein (VAP) binding, ceramide-transfer activity, and localization to the Golgi, although the effect on SM synthesis activity was only partially compromised by the alanine substitutions, which moderately destabilized the trimeric status of CERT. These results suggest that the basic amino acid cluster in the coiled-coil region is involved in the regulation of CERT function.
    Keywords sphingolipid ; phosphoinositide ; lipid trafficking ; endoplasmic reticulum ; golgi ; lipid transfer protein ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 500
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Poliovirus-nonsusceptible Vero cell line for the World Health Organization global action plan

    Yuko Okemoto-Nakamura / Kenji Someya / Toshiyuki Yamaji / Kyoko Saito / Makoto Takeda / Kentaro Hanada

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 9

    Abstract: Abstract Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1- ... ...

    Abstract Abstract Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1-transmitted cases have been largely eliminated except for limited regions. However, vaccine-derived PV, pathogenically reverted live PV vaccine strains, has become a serious issue. For the global eradication of polio, the World Health Organization is conducting the third edition of the Global Action Plan, which is requesting stringent control of potentially PV-infected materials. To facilitate the mission, we generated a PV-nonsusceptible Vero cell subline, which may serve as an ideal replacement of standard Vero cells to isolate emerging/re-emerging viruses without the risk of generating PV-infected materials.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Toshiyuki Yamaji / Kentaro Hanada

    PLoS ONE, Vol 9, Iss 2, p e

    2014  Volume 88124

    Abstract: Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various ... ...

    Abstract Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs). A TALEN pair targeting the human CERT gene (alternative name COL4A3BP) encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase), and B4GalT5 (encoding the major lactosylceramide synthase), and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT.

    Hiroaki Murakami / Norito Tamura / Yumi Enomoto / Kentaro Shimasaki / Kenji Kurosawa / Kentaro Hanada

    PLoS ONE, Vol 15, Iss 12, p e

    2020  Volume 0243980

    Abstract: Intellectual disability (ID) is a developmental disorder that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains. Although evidence-based interventions for patients have long been desired, their ... ...

    Abstract Intellectual disability (ID) is a developmental disorder that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains. Although evidence-based interventions for patients have long been desired, their progress has been hindered due to various determinants. One of these determinants is the complexity of the origins of ID. The ceramide transport protein (CERT) encoded by CERT1 mediates inter-organelle trafficking of ceramide for the synthesis of intracellular sphingomyelin. Utilizing whole exome sequencing analysis, we identified a novel CERT variant, which substitutes a serine at position 135 (S135) for a proline in a patient with severe ID. Biochemical analysis showed that S135 is essential for hyperphosphorylation of a serine-repeat motif of CERT, which is required for down-regulation of CERT activity. Amino acid replacements of S135 abnormally activated CERT and induced an intracellular punctate distribution pattern of this protein. These results identified specific ID-associated CERT1 mutations that induced gain-of-function effects on CERT activity. These findings provide a possible molecular basis for not only new diagnostics but also a conceivable pharmaceutical intervention for ID disorders caused by gain-of-function mutations in CERT1.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: A CRISPR Screen Identifies LAPTM4A and TM9SF Proteins as Glycolipid-Regulating Factors

    Toshiyuki Yamaji / Tsuyoshi Sekizuka / Yuriko Tachida / Chisato Sakuma / Kanta Morimoto / Makoto Kuroda / Kentaro Hanada

    iScience, Vol 11, Iss , Pp 409-

    2019  Volume 424

    Abstract: Summary: Glycosphingolipids (GSLs) are produced by various GSL-synthesizing enzymes, but post-translational regulation of these enzymes is incompletely understood. To address this knowledge disparity, we focused on biosynthesis of globotriaosylceramide ( ... ...

    Abstract Summary: Glycosphingolipids (GSLs) are produced by various GSL-synthesizing enzymes, but post-translational regulation of these enzymes is incompletely understood. To address this knowledge disparity, we focused on biosynthesis of globotriaosylceramide (Gb3), the Shiga toxin (STx) receptor, and performed a genome-wide CRISPR/CAS9 knockout screen in HeLa cells using STx1-mediated cytotoxicity. We identified various genes including sphingolipid-related genes and membrane-trafficking genes. In addition, we found two proteins, LAPTM4A and TM9SF2, for which physiological roles remain elusive. Disruption of either LAPTM4A or TM9SF2 genes reduced Gb3 biosynthesis, resulting in accumulation of its precursor, lactosylceramide. Loss of LAPTM4A decreased endogenous Gb3 synthase activity in a post-transcriptional mechanism, whereas loss of TM9SF2 did not affect Gb3 synthase activity but instead disrupted localization of Gb3 synthase. Furthermore, the Gb3-regulating activity of TM9SF2 was conserved in the TM9SF family. These results provide mechanistic insight into the post-translational regulation of the activity and localization of Gb3 synthase. : Molecular Biology; Molecular Mechanism of Behavior; Cell Biology; Functional Aspects of Cell Biology Subject Areas: Molecular Biology, Molecular Mechanism of Behavior, Cell Biology, Functional Aspects of Cell Biology
    Keywords Science ; Q
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection

    Yoshitaka Shirasago / Hidesuke Fukazawa / Shotaro Nagase / Yoshimi Shimizu / Tomoharu Mizukami / Takaji Wakita / Tetsuro Suzuki / Hideki Tani / Masuo Kondoh / Takuya Kuroda / Satoshi Yasuda / Yoji Sato / Kentaro Hanada / Masayoshi Fukasawa

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 12

    Abstract: Abstract Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on ...

    Abstract Abstract Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top