LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Antigen-Based Point of Care Testing (POCT) for Diagnosing SARS-CoV-2: Assessing Performance.

    Keshav, Vidya / Scott, Lesley / David, Anura / Noble, Lara / Mayne, Elizabeth / Stevens, Wendy

    Methods in molecular biology (Clifton, N.J.)

    2022  Volume 2452, Page(s) 45–62

    Abstract: Currently, the most accurate way to diagnose an active SARS-CoV-2 (COVID-19) infection is through detection of viral RNA using reverse transcription polymerase chain reaction (RT-PCR) test. While RT-PCR tests are the most sensitive for identifying ... ...

    Abstract Currently, the most accurate way to diagnose an active SARS-CoV-2 (COVID-19) infection is through detection of viral RNA using reverse transcription polymerase chain reaction (RT-PCR) test. While RT-PCR tests are the most sensitive for identifying infection, there are significant limitations, such as global access to sufficient test kits, turnaround times (TAT) from specimen collection to test result is often greater than 24 h and the need for skilled operators in accredited laboratories requiring specialized equipment. A rapid test performed at the point of care (POC) could provide a result within an approximate time of 30 min post specimen collection, be performed by a health care worker and comprise a simple workflow, improving both turnaround time and potentially decreasing costs (e.g., transport, cold-chain, skilled laboratory staff, complex equipment). Determining the performance of SARS-CoV-2 RT-PCR tests is, however, easier to assess than antigen-based POCT, as residual clinical specimens (swabs in universal transport media [UTM]) are readily available in laboratory environments, and do not require patient informed consent. Evaluating the performance of POCT requires informed-consent driven studies, with patients required to provide a standard of care specimen as well as study evaluation specimens, which is often not acceptable as nasopharyngeal swabbing can be invasive, clinical field trials are costly and time consuming. Many institutions and regulatory bodies also require preliminary data prior to use in field settings. Therefore, we have developed a method to determine the performance of antigen based POCT that can be used by implementers in national healthcare programs, regulators and rapid test developers. The method investigates both quantitative and qualitative parameters, with the latter providing insights into the capability for implementation and national program uptake.
    MeSH term(s) COVID-19/diagnosis ; COVID-19 Testing ; Humans ; Nasopharynx ; Point-of-Care Testing ; SARS-CoV-2/genetics ; Sensitivity and Specificity
    Language English
    Publishing date 2022-05-12
    Publishing country United States
    Document type Journal Article
    ISSN 1940-6029
    ISSN (online) 1940-6029
    DOI 10.1007/978-1-0716-2111-0_4
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Recombinant Fusion Protein PbrD Cross-Linked to Calcium Alginate Nanoparticles for Pb Remediation.

    Keshav, Vidya / Franklyn, Paul / Kondiah, Kulsum

    ACS omega

    2019  Volume 4, Issue 16, Page(s) 16816–16825

    Abstract: Lead (Pb) pollution arising from industrial and mining activities has led to widespread environmental toxicity, particularly in South Africa. Humans exposed to Pb are reported to suffer from detrimental health impacts that can lead to fatalities. As such, ...

    Abstract Lead (Pb) pollution arising from industrial and mining activities has led to widespread environmental toxicity, particularly in South Africa. Humans exposed to Pb are reported to suffer from detrimental health impacts that can lead to fatalities. As such, there is an urgent need to remediate Pb from the environment. In this study, we propose the use of a Pb-specific recombinant fusion metalloprotein, rPbrD surface-cross-linked onto calcium alginate nanoparticles (CANPs) for the biosorption of Pb(II) from aqueous solution. The prepared biosorbents were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. Their ability to biosorb soluble Pb(II) was determined by inductively coupled plasma mass spectroscopy and their adsorption mechanism was described according to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherms. The rate of Pb uptake for bare CANPs and rPbrD-CANPs at a concentration of 100 mg/L metal was 3.34 and 8.82 mg/g, respectively, within 30 min. The adsorption data for the bare CANPs best fit the Langmuir isotherm, whereas the adsorption data for rPbrD-CANPs best fitted the Freundlich isotherm. Based on the sorption intensity (
    Language English
    Publishing date 2019-10-04
    Publishing country United States
    Document type Journal Article
    ISSN 2470-1343
    ISSN (online) 2470-1343
    DOI 10.1021/acsomega.9b01624
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top