LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article: miR27a, a fine-tuning molecule, interacts with growth hormone (GH) signaling and ornithine decarboxylase (ODC) via targeting STAT5

    Coker-Gurkan, Ajda / Koyuncu, Kadriye / Yerlikaya, Pinar Obakan / Arisan, Elif Damla

    Amino acids. 2022 Jan., v. 54, no. 1

    2022  

    Abstract: Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and ... ...

    Abstract Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and differentiation. The importance of miR27a has shown to exert a suppressive effect on ornithine decarboxylase (ODC) expression in dwarf mice models. We aimed to modulate the role of A13S, F166Δ, T24 GH gene mutations’ impact on PA metabolism and epithelial–mesencyhmal transition (EMT) pathway through miR27a. Biologically active GH signaling triggered cell viability, growth, and colony formation, but T24A alteration significantly decreases aggressive profiles due to inactive GH signaling through a decline in STAT5 activity and expressions of STAT5, c-myc and ODC. Although statistically significant increase in intracellular PA levels in wt GH signaling HEK293 cells compared to HEK293 cells with a lack of GH signaling, a sharp decline in PA levels measured in each mutant GH expressing HEK293 cells. When we inhibited miR27a, proliferation and colony formation accelerated through a significant increase in putrescine levels and upregulation of ODC, STAT5 expression. In contrast, a substantial decline in GH-mediated colony enlargement observed via ODC, STAT5 downregulation, and PA depletion in both wt and mutant GH expressing HEK293 cell lines by miR27a mimic transfection. In conclusion, T24A mutant GH expression declines the GH signaling through STAT5 activity, and mutant GH signaling decreased cell proliferation, division, and colony formation via EMT inhibition. The autocrine GH-mediated proliferative profiles were under the control of miR27a that depletes intracellular putrescine levels via targeting ODC.
    Keywords autocrine signaling ; cell growth ; cell proliferation ; cell viability ; genes ; metabolism ; mutants ; ornithine decarboxylase ; putrescine ; somatotropin ; spermidine ; spermine ; transfection
    Language English
    Dates of publication 2022-01
    Size p. 71-84.
    Publishing place Springer Vienna
    Document type Article
    ZDB-ID 1121341-3
    ISSN 1438-2199 ; 0939-4451
    ISSN (online) 1438-2199
    ISSN 0939-4451
    DOI 10.1007/s00726-021-03101-9
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  2. Article ; Online: miR27a, a fine-tuning molecule, interacts with growth hormone (GH) signaling and ornithine decarboxylase (ODC) via targeting STAT5.

    Coker-Gurkan, Ajda / Koyuncu, Kadriye / Yerlikaya, Pinar Obakan / Arisan, Elif Damla

    Amino acids

    2021  Volume 54, Issue 1, Page(s) 71–84

    Abstract: Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and ... ...

    Abstract Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and differentiation. The importance of miR27a has shown to exert a suppressive effect on ornithine decarboxylase (ODC) expression in dwarf mice models. We aimed to modulate the role of A13S, F166Δ, T24 GH gene mutations' impact on PA metabolism and epithelial-mesencyhmal transition (EMT) pathway through miR27a. Biologically active GH signaling triggered cell viability, growth, and colony formation, but T24A alteration significantly decreases aggressive profiles due to inactive GH signaling through a decline in STAT5 activity and expressions of STAT5, c-myc and ODC. Although statistically significant increase in intracellular PA levels in wt GH signaling HEK293 cells compared to HEK293 cells with a lack of GH signaling, a sharp decline in PA levels measured in each mutant GH expressing HEK293 cells. When we inhibited miR27a, proliferation and colony formation accelerated through a significant increase in putrescine levels and upregulation of ODC, STAT5 expression. In contrast, a substantial decline in GH-mediated colony enlargement observed via ODC, STAT5 downregulation, and PA depletion in both wt and mutant GH expressing HEK293 cell lines by miR27a mimic transfection. In conclusion, T24A mutant GH expression declines the GH signaling through STAT5 activity, and mutant GH signaling decreased cell proliferation, division, and colony formation via EMT inhibition. The autocrine GH-mediated proliferative profiles were under the control of miR27a that depletes intracellular putrescine levels via targeting ODC.
    MeSH term(s) Animals ; Growth Hormone/genetics ; Growth Hormone/metabolism ; HEK293 Cells ; Humans ; Mice ; Ornithine Decarboxylase/metabolism ; Ornithine Decarboxylase Inhibitors ; Putrescine/metabolism ; Putrescine/pharmacology ; STAT5 Transcription Factor/genetics ; STAT5 Transcription Factor/metabolism ; Spermidine/metabolism
    Chemical Substances Ornithine Decarboxylase Inhibitors ; STAT5 Transcription Factor ; Growth Hormone (9002-72-6) ; Ornithine Decarboxylase (EC 4.1.1.17) ; Spermidine (U87FK77H25) ; Putrescine (V10TVZ52E4)
    Language English
    Publishing date 2021-11-26
    Publishing country Austria
    Document type Journal Article
    ZDB-ID 1121341-3
    ISSN 1438-2199 ; 0939-4451
    ISSN (online) 1438-2199
    ISSN 0939-4451
    DOI 10.1007/s00726-021-03101-9
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top