LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 16

Search options

  1. Article ; Online: The ViReflow pipeline enables user friendly large scale viral consensus genome reconstruction

    Niema Moshiri / Kathleen M. Fisch / Amanda Birmingham / Peter DeHoff / Gene W. Yeo / Kristen Jepsen / Louise C. Laurent / Rob Knight

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 6

    Abstract: Abstract Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided public health officials with actionable information ... ...

    Abstract Abstract Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided public health officials with actionable information to prevent the spread of the virus. However, with great sequencing comes great computation, and while cloud computing platforms bring high-performance computing directly into the hands of all who seek it, optimal design and configuration of a cloud compute cluster requires significant system administration expertise. We developed ViReflow, a user-friendly viral consensus sequence reconstruction pipeline enabling rapid analysis of viral sequence datasets leveraging Amazon Web Services (AWS) cloud compute resources and the Reflow system. ViReflow was developed specifically in response to the COVID-19 pandemic, but it is general to any viral pathogen. Importantly, when utilized with sufficient compute resources, ViReflow can trim, map, call variants, and call consensus sequences from amplicon sequence data from 1000 SARS-CoV-2 samples at 1000X depth in < 10 min, with no user intervention. ViReflow’s simplicity, flexibility, and scalability make it an ideal tool for viral molecular epidemiological efforts.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Two iPSC lines generated from the bone marrow of a relapsed/refractory AML patient display normal karyotypes and myeloid differentiation potential

    Amanda E. Yamasaki / Nicholas E. King / Hiroko Matsui / Kristen Jepsen / Athanasia D. Panopoulos

    Stem Cell Research, Vol 41, Iss , Pp - (2019)

    2019  

    Abstract: Using iPSCs to study cancer has been complicated by the fact that many cancer cells are difficult to reprogram, which has been attributed to the genomic abnormalities present. Acute Myeloid Leukemia (AML) is a complex disease that presents with various ... ...

    Abstract Using iPSCs to study cancer has been complicated by the fact that many cancer cells are difficult to reprogram, which has been attributed to the genomic abnormalities present. Acute Myeloid Leukemia (AML) is a complex disease that presents with various types of genomic aberrations that affect prognosis. Here we reprogrammed CD34+ cells from an AML patient containing a rare der(7)t(7;13) translocation associated with poor prognosis, who had relapsed and was refractory to current treatments. The generated AML-iPSCs displayed normal karyotypes and myeloid differentiation potential. These findings have implications for modeling and treating AML disease. Keywords: Acute Myeloid Leukemia, Bone marrow cells, Disease modeling, Reprogramming, Induced pluripotent stem cells
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: An iPSC line derived from a human acute myeloid leukemia cell line (HL-60-iPSC) retains leukemic abnormalities and displays myeloid differentiation defects

    Amanda E. Yamasaki / Jane N. Warshaw / Beverly L. Kyalwazi / Hiroko Matsui / Kristen Jepsen / Athanasia D. Panopoulos

    Stem Cell Research, Vol 49, Iss , Pp 102096- (2020)

    2020  

    Abstract: Cancer-derived iPSCs have provided valuable insight into oncogenesis, but human cancer cells can often be difficult to reprogram, especially in cases of complex genetic abnormalities. Here we report, to our knowledge, the first successful generation of ... ...

    Abstract Cancer-derived iPSCs have provided valuable insight into oncogenesis, but human cancer cells can often be difficult to reprogram, especially in cases of complex genetic abnormalities. Here we report, to our knowledge, the first successful generation of an iPSC line from a human immortalized acute myeloid leukemia (AML) cell line, the cell line HL-60. This iPSC line retains a majority of the leukemic genotype and displays defects in myeloid differentiation, thus providing a tool for modeling and studying AML.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Extracellular vesicles produced in B cells deliver tumor suppressor miR-335 to breast cancer cells disrupting oncogenic programming in vitro and in vivo

    Gonzalo Almanza / Jeffrey J. Rodvold / Brian Tsui / Kristen Jepsen / Hannah Carter / Maurizio Zanetti

    Scientific Reports, Vol 8, Iss 1, Pp 1-

    2018  Volume 10

    Abstract: Abstract The successful implementation of miRNA (miR) therapies in humans will ultimately rely on the use of vehicles with improved cellular delivery capability. Here we tested a new system that leverages extracellular vesicles (EVs) laden with a tumor ... ...

    Abstract Abstract The successful implementation of miRNA (miR) therapies in humans will ultimately rely on the use of vehicles with improved cellular delivery capability. Here we tested a new system that leverages extracellular vesicles (EVs) laden with a tumor suppressor miRNA (miR-335) produced in B cells by plasmid DNA induction (iEVs). We demonstrate that iEVs-335 efficiently and durably restored the endogenous miR-335 pool in human triple negative breast cancer cells, downregulated the expression of the miR-335 target gene SOX4 transcription factor, and markedly inhibited tumor growth in vivo. Remarkably, iEVs-335 mediated transcriptional effects that persisted in tumors after 60 days post orthotopic implantation. Genome-wide RNASeq analysis of cancer cells treated in vitro with iEVs-335 showed the regulation of a discrete number of genes only, without broad transcriptome perturbations. This new technology may be ideally suited for therapies aimed to restore tumor suppressor miRNAs in cancer cells, disrupting the oncogenic program established after escape from miRNA control.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2018-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Mutational profiling of micro-dissected pre-malignant lesions from archived specimens

    Daniela Nachmanson / Joseph Steward / Huazhen Yao / Adam Officer / Eliza Jeong / Thomas J. O’Keefe / Farnaz Hasteh / Kristen Jepsen / Gillian L. Hirst / Laura J. Esserman / Alexander D. Borowsky / Olivier Harismendy

    BMC Medical Genomics, Vol 13, Iss 1, Pp 1-

    2020  Volume 15

    Abstract: Abstract Background Systematic cancer screening has led to the increased detection of pre-malignant lesions (PMLs). The absence of reliable prognostic markers has led mostly to over treatment resulting in potentially unnecessary stress, or insufficient ... ...

    Abstract Abstract Background Systematic cancer screening has led to the increased detection of pre-malignant lesions (PMLs). The absence of reliable prognostic markers has led mostly to over treatment resulting in potentially unnecessary stress, or insufficient treatment and avoidable progression. Importantly, most mutational profiling studies have relied on PML synchronous to invasive cancer, or performed in patients without outcome information, hence limiting their utility for biomarker discovery. The limitations in comprehensive mutational profiling of PMLs are in large part due to the significant technical and methodological challenges: most PML specimens are small, fixed in formalin and paraffin embedded (FFPE) and lack matching normal DNA. Methods Using test DNA from a highly degraded FFPE specimen, multiple targeted sequencing approaches were evaluated, varying DNA input amount (3–200 ng), library preparation strategy (BE: Blunt-End, SS: Single-Strand, AT: A-Tailing) and target size (whole exome vs. cancer gene panel). Variants in high-input DNA from FFPE and mirrored frozen specimens were used for PML-specific variant calling training and testing, respectively. The resulting approach was applied to profile and compare multiple regions micro-dissected (mean area 5 mm2) from 3 breast ductal carcinoma in situ (DCIS). Results Using low-input FFPE DNA, BE and SS libraries resulted in 4.9 and 3.7 increase over AT libraries in the fraction of whole exome covered at 20x (BE:87%, SS:63%, AT:17%). Compared to high-confidence somatic mutations from frozen specimens, PML-specific variant filtering increased recall (BE:85%, SS:80%, AT:75%) and precision (BE:93%, SS:91%, AT:84%) to levels expected from sampling variation. Copy number alterations were consistent across all tested approaches and only impacted by the design of the capture probe-set. Applied to DNA extracted from 9 micro-dissected regions (8 PML, 1 normal epithelium), the approach achieved comparable performance, illustrated the data adequacy to identify candidate driver events (GATA3 mutations, ERBB2 or FGFR1 gains, TP53 loss) and measure intra-lesion genetic heterogeneity. Conclusion Alternate experimental and analytical strategies increased the accuracy of DNA sequencing from archived micro-dissected PML regions, supporting the deeper molecular characterization of early cancer lesions and achieving a critical milestone in the development of biology-informed prognostic markers and precision chemo-prevention strategies.
    Keywords Targeted sequencing ; Cancer progression ; Pre-malignant lesion ; Variant calling ; FFPE ; Micro-dissection ; Internal medicine ; RC31-1245 ; Genetics ; QH426-470
    Subject code 616
    Language English
    Publishing date 2020-11-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival.

    Alyssa Batista / Jeffrey J Rodvold / Su Xian / Stephen C Searles / Alyssa Lew / Takao Iwawaki / Gonzalo Almanza / T Cameron Waller / Jonathan Lin / Kristen Jepsen / Hannah Carter / Maurizio Zanetti

    PLoS Biology, Vol 18, Iss 6, p e

    2020  Volume 3000687

    Abstract: In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible ... ...

    Abstract In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.
    Keywords Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2020-06-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: TCF1 and LEF1 Control Treg Competitive Survival and Tfr Development to Prevent Autoimmune Diseases

    Bi-Huei Yang / Ke Wang / Shuo Wan / Yan Liang / Xiaomei Yuan / Yi Dong / Sunglim Cho / Wanqing Xu / Kristen Jepsen / Gen-Sheng Feng / Li-Fan Lu / Hai-Hui Xue / Wenxian Fu

    Cell Reports, Vol 27, Iss 12, Pp 3629-3645.e

    2019  Volume 6

    Abstract: Summary: CD4+ Foxp3+ T regulatory (Treg) cells are key players in preventing lethal autoimmunity. Tregs undertake differentiation processes and acquire diverse functional properties. However, how Treg’s differentiation and functional specification are ... ...

    Abstract Summary: CD4+ Foxp3+ T regulatory (Treg) cells are key players in preventing lethal autoimmunity. Tregs undertake differentiation processes and acquire diverse functional properties. However, how Treg’s differentiation and functional specification are regulated remains incompletely understood. Here, we report that gradient expression of TCF1 and LEF1 distinguishes Tregs into three distinct subpopulations, particularly highlighting a subset of activated Treg (aTreg) cells. Treg-specific ablation of TCF1 and LEF1 renders the mice susceptible to systemic autoimmunity. TCF1 and LEF1 are dispensable for Treg’s suppressive capacity but essential for maintaining a normal aTreg pool and promoting Treg’s competitive survival. As a consequence, the development of T follicular regulatory (Tfr) cells, which are a subset of aTreg, is abolished in TCF1/LEF1-conditional knockout mice, leading to unrestrained T follicular helper (Tfh) and germinal center B cell responses. Thus, TCF1 and LEF1 act redundantly to control the maintenance and functional specification of Treg subsets to prevent autoimmunity. : Transcriptional regulation of Treg differentiation and function remains incompletely understood. Yang et al. report that two TCF family transcription factors regulate the survival and functional specification of a subset of Treg cells to prevent autoimmunity. Keywords: regulatory T cells, TCF1, LEF1, autoimmunity, Tfr, homeostasis, competitive fitness
    Keywords Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2019-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication

    Hélène Badouin / Amandine Velt / François Gindraud / Timothée Flutre / Vincent Dumas / Sonia Vautrin / William Marande / Jonathan Corbi / Erika Sallet / Jérémy Ganofsky / Sylvain Santoni / Dominique Guyot / Eugenia Ricciardelli / Kristen Jepsen / Jos Käfer / Hélène Berges / Eric Duchêne / Franck Picard / Philippe Hugueney /
    Raquel Tavares / Roberto Bacilieri / Camille Rustenholz / Gabriel A. B. Marais

    Genome Biology, Vol 21, Iss 1, Pp 1-

    2020  Volume 24

    Abstract: Abstract Background A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known ...

    Abstract Abstract Background A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. Results We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. Conclusions We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.
    Keywords Grapevine ; Dioecy ; Sex chromosomes ; Sex-determining genes ; Biology (General) ; QH301-705.5 ; Genetics ; QH426-470
    Subject code 590
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article: Genetic ancestry of participants in the National Children’s Study

    Smith, Erin N / Angelo D Arias / Christina D Chambers / Kelly A Frazer / Kristen Jepsen / Peter J Shepard

    Genome biology. 2014 Feb., v. 15, no. 2

    2014  

    Abstract: BACKGROUND: The National Children’s Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The ... ...

    Abstract BACKGROUND: The National Children’s Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes. RESULTS: We estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories. CONCLUSIONS: Our data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry.
    Keywords ancestry ; children ; epidemiological studies ; genome ; nationalities and ethnic groups ; parents ; pregnancy ; United States
    Language English
    Dates of publication 2014-02
    Size p. R22.
    Publishing place BioMed Central
    Document type Article
    ZDB-ID 2040529-7
    ISSN 1474-760X ; 1465-6914 ; 1465-6906
    ISSN (online) 1474-760X ; 1465-6914
    ISSN 1465-6906
    DOI 10.1186/gb-2014-15-2-r22
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  10. Article ; Online: Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain

    Giovanni Berardi / Laura Frey-Law / Kathleen A. Sluka / Emine O. Bayman / Christopher S. Coffey / Dixie Ecklund / Carol G. T. Vance / Dana L. Dailey / John Burns / Asokumar Buvanendran / Robert J. McCarthy / Joshua Jacobs / Xiaohong Joe Zhou / Richard Wixson / Tessa Balach / Chad M. Brummett / Daniel Clauw / Douglas Colquhoun / Steven E. Harte /
    Richard E. Harris / David A. Williams / Andrew C. Chang / Jennifer Waljee / Kathleen M. Fisch / Kristen Jepsen / Louise C. Laurent / Michael Olivier / Carl D. Langefeld / Timothy D. Howard / Oliver Fiehn / Jon M. Jacobs / Panshak Dakup / Wei-Jun Qian / Adam C. Swensen / Anna Lokshin / Martin Lindquist / Brian S. Caffo / Ciprian Crainiceanu / Scott Zeger / Ari Kahn / Tor Wager / Margaret Taub / James Ford

    Frontiers in Medicine, Vol

    The Acute to Chronic Pain Signatures (A2CPS) Study Protocol

    2022  Volume 9

    Abstract: Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors ... ...

    Abstract Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or “omics,” quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.
    Keywords postsurgical pain ; thoracic surgery ; pain ; biomarker ; risk factors ; protocol ; Medicine (General) ; R5-920
    Subject code 616
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top