LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article: Efficacy of Host Cell Serine Protease Inhibitor MM3122 against SARS-CoV-2 for Treatment and Prevention of COVID-19.

    Boon, Adrianus C M / L Bricker, Traci / Fritch, Ethan J / Leist, Sarah R / Gully, Kendra / Baric, Ralph S / Graham, Rachel L / Troan, Brigid V / Mahoney, Matthew / Janetka, James W

    bioRxiv : the preprint server for biology

    2024  

    Abstract: We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly ... ...

    Abstract We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses.
    Importance: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
    Language English
    Publishing date 2024-02-12
    Publishing country United States
    Document type Preprint
    DOI 10.1101/2024.02.09.579701
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Efficacy of Host Cell Serine Protease Inhibitor MM3122 against SARS-CoV-2 for Treatment and Prevention of COVID-19

    Boon, Adrianus C.M. / L. Bricker, Traci / Fritch, Ethan J. / Leist, Sarah R. / Gully, Kendra / Baric, Ralph S. / Graham, Rachel L. / Troan, Brigid V. / Mahoney, Matthew / Janetka, James W.

    bioRxiv

    Abstract: We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including TMPRSS2, matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower ... ...

    Abstract We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including TMPRSS2, matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is effective against the XBB.1.5 and EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses.
    Keywords covid19
    Language English
    Publishing date 2024-02-12
    Publisher Cold Spring Harbor Laboratory
    Document type Article ; Online
    DOI 10.1101/2024.02.09.579701
    Database COVID19

    Kategorien

To top