LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 17

Search options

  1. Article ; Online: Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1.

    Milad Ghomlaghi / Guang Yang / Sung-Young Shin / David E James / Lan K Nguyen

    PLoS Computational Biology, Vol 17, Iss 9, p e

    2021  Volume 1008513

    Abstract: The PI3K/MTOR signalling network regulates a broad array of critical cellular processes, including cell growth, metabolism and autophagy. The mechanistic target of rapamycin (MTOR) kinase functions as a core catalytic subunit in two physically and ... ...

    Abstract The PI3K/MTOR signalling network regulates a broad array of critical cellular processes, including cell growth, metabolism and autophagy. The mechanistic target of rapamycin (MTOR) kinase functions as a core catalytic subunit in two physically and functionally distinct complexes mTORC1 and mTORC2, which also share other common components including MLST8 (also known as GβL) and DEPTOR. Despite intensive research, how mTORC1 and 2 assembly and activity are coordinated, and how they are functionally linked remain to be fully characterized. This is due in part to the complex network wiring, featuring multiple feedback loops and intricate post-translational modifications. Here, we integrate predictive network modelling, in vitro experiments and -omics data analysis to elucidate the emergent dynamic behaviour of the PI3K/MTOR network. We construct new mechanistic models that encapsulate critical mechanistic details, including mTORC1/2 coordination by MLST8 (de)ubiquitination and the Akt-to-mTORC2 positive feedback loop. Model simulations validated by experimental studies revealed a previously unknown biphasic, threshold-gated dependence of mTORC1 activity on the key mTORC2 subunit SIN1, which is robust against cell-to-cell variation in protein expression. In addition, our integrative analysis demonstrates that ubiquitination of MLST8, which is reversed by OTUD7B, is regulated by IRS1/2. Our results further support the essential role of MLST8 in enabling both mTORC1 and 2's activity and suggest MLST8 as a viable therapeutic target in breast cancer. Overall, our study reports a new mechanistic model of PI3K/MTOR signalling incorporating MLST8-mediated mTORC1/2 formation and unveils a novel regulatory linkage between mTORC1 and mTORC2.
    Keywords Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2021-09-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Feedback, Crosstalk and Competition

    Milad Ghomlaghi / Anthony Hart / Nhan Hoang / Sungyoung Shin / Lan K. Nguyen

    International Journal of Molecular Sciences, Vol 22, Iss 13, p

    Ingredients for Emergent Non-Linear Behaviour in the PI3K/mTOR Signalling Network

    2021  Volume 6944

    Abstract: The PI3K/mTOR signalling pathway plays a central role in the governing of cell growth, survival and metabolism. As such, it must integrate and decode information from both external and internal sources to guide efficient decision-making by the cell. To ... ...

    Abstract The PI3K/mTOR signalling pathway plays a central role in the governing of cell growth, survival and metabolism. As such, it must integrate and decode information from both external and internal sources to guide efficient decision-making by the cell. To facilitate this, the pathway has evolved an intricate web of complex regulatory mechanisms and elaborate crosstalk with neighbouring signalling pathways, making it a highly non-linear system. Here, we describe the mechanistic biological details that underpin these regulatory mechanisms, covering a multitude of negative and positive feedback loops, feed-forward loops, competing protein interactions, and crosstalk with major signalling pathways. Further, we highlight the non-linear and dynamic network behaviours that arise from these regulations, uncovered through computational and experimental studies. Given the pivotal role of the PI3K/mTOR network in cellular homeostasis and its frequent dysregulation in pathologies including cancer and diabetes, a coherent and systems-level understanding of the complex regulation and consequential dynamic signalling behaviours within this network is imperative for advancing biology and development of new therapeutic approaches.
    Keywords PI3K/mTOR signalling ; feedback loop ; crosstalk ; nonlinear dynamics ; cancer ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by DEPTOR

    Thawfeek M. Varusai / Lan K. Nguyen

    Scientific Reports, Vol 8, Iss 1, Pp 1-

    2018  Volume 14

    Abstract: Abstract The mechanistic Target of Rapamycin (mTOR) signalling network is an evolutionarily conserved network that controls key cellular processes, including cell growth and metabolism. Consisting of the major kinase complexes mTOR Complex 1 and 2 ( ... ...

    Abstract Abstract The mechanistic Target of Rapamycin (mTOR) signalling network is an evolutionarily conserved network that controls key cellular processes, including cell growth and metabolism. Consisting of the major kinase complexes mTOR Complex 1 and 2 (mTORC1/2), the mTOR network harbours complex interactions and feedback loops. The DEP domain-containing mTOR-interacting protein (DEPTOR) was recently identified as an endogenous inhibitor of both mTORC1 and 2 through direct interactions, and is in turn degraded by mTORC1/2, adding an extra layer of complexity to the mTOR network. Yet, the dynamic properties of the DEPTOR-mTOR network and the roles of DEPTOR in coordinating mTORC1/2 activation dynamics have not been characterised. Using computational modelling, systems analysis and dynamic simulations we show that DEPTOR confers remarkably rich and complex dynamic behaviours to mTOR signalling, including abrupt, bistable switches, oscillations and co-existing bistable/oscillatory responses. Transitions between these distinct modes of behaviour are enabled by modulating DEPTOR expression alone. We characterise the governing conditions for the observed dynamics by elucidating the network in its vast multi-dimensional parameter space, and develop strategies to identify core network design motifs underlying these dynamics. Our findings provide new systems-level insights into the complexity of mTOR signalling contributed by DEPTOR.
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Polyubiquitin chain assembly and organisation determine the dynamics of protein activation and degradation

    LanK.Nguyen / BorisNKholodenko

    Frontiers in Physiology, Vol

    2014  Volume 5

    Abstract: Protein degradation via ubiquitination is a major proteolytic mechanism in cells. Once a protein is destined for degradation, it is tagged by multiple ubiquitin molecules. The synthesised polyubiquitin chains can be recognised by the 26S proteosome where ...

    Abstract Protein degradation via ubiquitination is a major proteolytic mechanism in cells. Once a protein is destined for degradation, it is tagged by multiple ubiquitin molecules. The synthesised polyubiquitin chains can be recognised by the 26S proteosome where proteins are degraded. These chains form through multiple ubiquitination cycles that are similar to multi-site phosphorylation cycles. As kinases and phosphatases, two opposing enzymes (E3 ligases and deubiquitinases DUBs) catalyse (de)ubiquitination cycles. Although multi-ubiquitination cycles are fundamental mechanisms of controlling protein concentrations within a cell, their dynamics have never been explored. Here, we fill this knowledge gap. We show that under permissive physiological conditions, the formation of polyubiquitin chain of length greater than two and subsequent degradation of the ubiquitinated protein, which is balanced by protein synthesis, can display bistable, switch-like responses. Interestingly, the occurrence of bistability becomes pronounced, as the chain grows, giving rise to “all-or-none” regulation at the protein levels. We give predictions of protein distributions under bistable regime awaiting experimental verification. Importantly, we show for the first time that sustained oscillations can robustly arise in the process of formation of ubiquitin chain, largely due to the degradation of the target protein. This new feature is opposite to the properties of multi-site phosphorylation cycles, which are incapable of generating oscillation if the total abundance of interconverted protein forms is conserved. We derive structural and kinetic constraints for the emergence of oscillations, indicating that a competition between different substrate forms and the E3 and DUB is critical for oscillation. Our work provides the first detailed elucidation of the dynamical features brought about by different molecular setups of the polyubiquitin chain assembly process responsible for protein degradation.
    Keywords Ubiquitin ; oscillations ; Protein degradation ; bistability ; polyubiquitin chain ; ubiquitination dynamics ; protein life-time ; Physiology ; QP1-981 ; Science ; Q
    Subject code 612
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Frontiers
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Unveiling Hidden Dynamics of Hippo Signalling

    Sung-Young Shin / Lan K. Nguyen

    Genes, Vol 7, Iss 8, p

    A Systems Analysis

    2016  Volume 44

    Abstract: The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate ... ...

    Abstract The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies.
    Keywords hippo signaling ; ERK MAPK signaling ; mathematical modelling ; systems analysis ; network dynamics ; cell fate determination ; feedback regulation ; Genetics ; QH426-470 ; Biology (General) ; QH301-705.5 ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2016-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells

    Sung-Young Shin / Min-Wook Kim / Kwang-Hyun Cho / Lan K. Nguyen

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 15

    Abstract: Abstract A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, ...

    Abstract Abstract A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer.

    Sung-Young Shin / Anna-Katharina Müller / Nandini Verma / Sima Lev / Lan K Nguyen

    PLoS Computational Biology, Vol 14, Iss 6, p e

    2018  Volume 1006192

    Abstract: Prediction of drug combinations that effectively target cancer cells is a critical challenge for cancer therapy, in particular for triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype with no effective targeted treatment. As ... ...

    Abstract Prediction of drug combinations that effectively target cancer cells is a critical challenge for cancer therapy, in particular for triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype with no effective targeted treatment. As signalling pathway networks critically control cancer cell behaviour, analysis of signalling network activity and crosstalk can help predict potent drug combinations and rational stratification of patients, thus bringing therapeutic and prognostic values. We have previously showed that the non-receptor tyrosine kinase PYK2 is a downstream effector of EGFR and c-Met and demonstrated their crosstalk signalling in basal-like TNBC. Here we applied a systems modelling approach and developed a mechanistic model of the integrated EGFR-PYK2-c-Met signalling network to identify and prioritize potent drug combinations for TNBC. Model predictions validated by experimental data revealed that among six potential combinations of drug pairs targeting the central nodes of the network, including EGFR, c-Met, PYK2 and STAT3, co-targeting of EGFR and PYK2 and to a lesser extent of EGFR and c-Met yielded strongest synergistic effect. Importantly, the synergy in co-targeting EGFR and PYK2 was linked to switch-like cell proliferation-associated responses. Moreover, simulations of patient-specific models using public gene expression data of TNBC patients led to predictive stratification of patients into subgroups displaying distinct susceptibility to specific drug combinations. These results suggest that mechanistic systems modelling is a powerful approach for the rational design, prediction and prioritization of potent combination therapies for individual patients, thus providing a concrete step towards personalized treatment for TNBC and other tumour types.
    Keywords Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2018-06-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy

    Benjamin Scott Padman / Thanh Ngoc Nguyen / Louise Uoselis / Marvin Skulsuppaisarn / Lan K. Nguyen / Michael Lazarou

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Selective autophagy receptors are thought to selectively recruit Atg8 positive membranes to cargo via their LIR motif. Here, the authors show the LIR motifs in OPTN and NDP52 are dispensable for selectivity, functioning instead to recruit additional ... ...

    Abstract Selective autophagy receptors are thought to selectively recruit Atg8 positive membranes to cargo via their LIR motif. Here, the authors show the LIR motifs in OPTN and NDP52 are dispensable for selectivity, functioning instead to recruit additional receptors and amplify mitophagy.
    Keywords Science ; Q
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy

    Benjamin Scott Padman / Thanh Ngoc Nguyen / Louise Uoselis / Marvin Skulsuppaisarn / Lan K. Nguyen / Michael Lazarou

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Selective autophagy receptors are thought to selectively recruit Atg8 positive membranes to cargo via their LIR motif. Here, the authors show the LIR motifs in OPTN and NDP52 are dispensable for selectivity, functioning instead to recruit additional ... ...

    Abstract Selective autophagy receptors are thought to selectively recruit Atg8 positive membranes to cargo via their LIR motif. Here, the authors show the LIR motifs in OPTN and NDP52 are dispensable for selectivity, functioning instead to recruit additional receptors and amplify mitophagy.
    Keywords Science ; Q
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression

    Dougall Norris / Pengyi Yang / Sung-Young Shin / Alison L. Kearney / Hani Jieun Kim / Thomas Geddes / Alistair M. Senior / Daniel J. Fazakerley / Lan K. Nguyen / David E. James / James G. Burchfield

    iScience, Vol 24, Iss 2, Pp 102118- (2021)

    2021  

    Abstract: Summary: Insulin's activation of PI3K/Akt signaling, stimulates glucose uptake by enhancing delivery of GLUT4 to the cell surface. Here we examined the origins of intercellular heterogeneity in insulin signaling. Akt activation alone accounted for ~25% ... ...

    Abstract Summary: Insulin's activation of PI3K/Akt signaling, stimulates glucose uptake by enhancing delivery of GLUT4 to the cell surface. Here we examined the origins of intercellular heterogeneity in insulin signaling. Akt activation alone accounted for ~25% of the variance in GLUT4, indicating that additional sources of variance exist. The Akt and GLUT4 responses were highly reproducible within the same cell, suggesting the variance is between cells (extrinsic) and not within cells (intrinsic). Generalized mechanistic models (supported by experimental observations) demonstrated that the correlation between the steady-state levels of two measured signaling processes decreases with increasing distance from each other and that intercellular variation in protein expression (as an example of extrinsic variance) is sufficient to account for the variance in and between Akt and GLUT4. Thus, the response of a population to insulin signaling is underpinned by considerable single-cell heterogeneity that is largely driven by variance in gene/protein expression between cells.
    Keywords Cell Biology ; Mathematical Biosciences ; Systems Biology ; Experimental Models in Systems Biology ; Science ; Q
    Subject code 612
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top