LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Artificial double inversion recovery images can substitute conventionally acquired images

    Piet M. Bouman / Martijn D. Steenwijk / Jeroen J. G. Geurts / Laura E. Jonkman

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    an MRI-histology study

    2022  Volume 9

    Abstract: Abstract Cortical multiple sclerosis lesions are disease-specific, yet inconspicuous on magnetic resonance images (MRI). Double inversion recovery (DIR) images are sensitive, but often unavailable in clinical routine and clinical trials. Artificially ... ...

    Abstract Abstract Cortical multiple sclerosis lesions are disease-specific, yet inconspicuous on magnetic resonance images (MRI). Double inversion recovery (DIR) images are sensitive, but often unavailable in clinical routine and clinical trials. Artificially generated images can mitigate this issue, but lack histopathological validation. In this work, artificial DIR images were generated from postmortem 3D-T1 and proton-density (PD)/T2 or 3D-T1 and 3D fluid-inversion recovery (FLAIR) images, using a generative adversarial network. All sequences were scored for cortical lesions, blinded to histopathology. Subsequently, tissue samples were stained for proteolipid protein (myelin) and scored for cortical lesions type I-IV (leukocortical, intracortical, subpial and cortex-spanning, respectively). Histopathological scorings were then (unblinded) compared to MRI using linear mixed models. Images from 38 patients (26 female, mean age 64.3 ± 10.7) were included. A total of 142 cortical lesions were detected, predominantly subpial. Histopathology-blinded/unblinded sensitivity was 13.4/35.2% for artificial DIR generated from T1-PD/T2, 14.1/41.5% for artificial DIR from T1-FLAIR, 17.6/49.3% for conventional DIR and 10.6/34.5% for 3D-T1. When blinded to histopathology, there were no differences; with histopathological feedback at hand, conventional DIR and artificial DIR from T1-FLAIR outperformed the other sequences. Differences between histopathology-blinded/unblinded sensitivity could be minified through adjustment of the scoring criteria. In conclusion, artificial DIR images, particularly generated from T1-FLAIR could potentially substitute conventional DIR images when these are unavailable.
    Keywords Medicine ; R ; Science ; Q
    Subject code 571 ; 610
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: 7T MRI allows detection of disturbed cortical lamination of the medial temporal lobe in patients with Alzheimer's disease

    Boyd Kenkhuis / Laura E. Jonkman / Marjolein Bulk / Mathijs Buijs / Baayla D.C. Boon / Femke H. Bouwman / Jeroen J.G. Geurts / Wilma D.J. van de Berg / Louise van der Weerd

    NeuroImage: Clinical, Vol 21, Iss , Pp - (2019)

    2019  

    Abstract: Using 7T T2⁎-weighted imaging, we scanned post-mortem hemispheres of Alzheimer patients and age-matched controls to describe the patterns of appearance of cortical lamination on T2*-weighted MRI in the medial temporal lobe and to assess the changes in ... ...

    Abstract Using 7T T2⁎-weighted imaging, we scanned post-mortem hemispheres of Alzheimer patients and age-matched controls to describe the patterns of appearance of cortical lamination on T2*-weighted MRI in the medial temporal lobe and to assess the changes in Alzheimer patients versus controls. While controls showed a hypointense line of Baillarger in the majority of the cases, appearance of cortical lamination varied to a greater extent in the Alzheimer patients. Severely distorted cortical lamination was also observed in advanced stage Alzheimer patients and presented itself as a broad hypointense inhomogeneous band, covering a large part of the cortical width. Histology indicated that the changes in the appearance of visible cortical lamination were not only associated with myelin changes, but also with diffuse cortical iron alterations and depositions. Therefore, imaging cortical lamination alterations in Alzheimer patients using T2*-weighted MRI might provide new information on involved neuroanatomical structures in an advanced neurodegenerative stage. Keywords: Alzheimer's disease, Magnetic resonance imaging, Myelin, Iron, Cortical lamination
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Neurology. Diseases of the nervous system ; RC346-429
    Subject code 610 ; 616
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Gray Matter Correlates of Cognitive Performance Differ between Relapsing-Remitting and Primary-Progressive Multiple Sclerosis.

    Laura E Jonkman / Diana M Rosenthal / Maria Pia Sormani / Laura Miles / Joseph Herbert / Robert I Grossman / Matilde Inglese

    PLoS ONE, Vol 10, Iss 10, p e

    2015  Volume 0129380

    Abstract: Multiple Sclerosis (MS) is a chronic inflammatory/demyelinating and neurodegenerative disease of the central nervous system (CNS). Most patients experience a relapsing-remitting (RR) course, while about 15-20% of patients experience a primary progressive ...

    Abstract Multiple Sclerosis (MS) is a chronic inflammatory/demyelinating and neurodegenerative disease of the central nervous system (CNS). Most patients experience a relapsing-remitting (RR) course, while about 15-20% of patients experience a primary progressive (PP) course. Cognitive impairment affects approximately 40-70% of all MS patients and differences in cognitive impairment between RR-MS and PP-MS have been found. We aimed to compare RR-MS and PP-MS patients in terms of cognitive performance, and to investigate the MRI correlates of cognitive impairment in the two groups using measures of brain volumes and cortical thickness. Fifty-seven patients (42 RR-MS, 15 PP-MS) and thirty-eight matched controls underwent neuropsychological (NP) testing and MRI. PP-MS patients scored lower than RR-MS patients on most of the NP tests in absence of any specific pattern. PP-MS patients showed significantly lower caudate volume. There was no significant difference in MRI correlates of cognitive impairment between the two groups except for a prevalent association with MRI measures of cortical GM injury in RR-MS patients and with MRI measures of subcortical GM injury in PP-MS patients. This suggests that although cognitive impairment results from several factors, cortical and subcortical GM injury may play a different role depending on the disease course.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Normal Aging Brain Collection Amsterdam (NABCA)

    Laura E. Jonkman / Yvon Galis-de Graaf / Marjolein Bulk / Eliane Kaaij / Petra J.W. Pouwels / Frederik Barkhof / Annemieke J.M. Rozemuller / Louise van der Weerd / Jeroen J.G. Geurts / Wilma D.J. van de Berg

    NeuroImage: Clinical, Vol 22, Iss , Pp - (2019)

    A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls

    2019  

    Abstract: Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) ...

    Abstract Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) provides a comprehensive collection of post-mortem (ultra-)high-field MRI (3Tesla and 7 Tesla) and neuropathological datasets of non-neurological controls. By providing MRI within the pipeline, NABCA uniquely stimulates translational neurosciences; from molecular and morphometric tissue studies to the clinical setting. We describe our pipeline, including a description of our on-call autopsy team, donor selection, in situ and ex vivo post-mortem MRI protocols, brain dissection and neuropathological diagnosis. A demographic, radiological and pathological overview of five selected cases on all these aspects is provided. Additionally, information is given on data management, data and tissue application procedures, including review by a scientific advisory board, and setting up a material transfer agreement before distribution of tissue. Finally, we focus on future prospects, which includes laying the foundation for a unique platform for neuroanatomical, histopathological and neuro-radiological education, of professionals, students and the general (lay) audience. Keywords: Brain banking, Non-neurological controls, MRI, Neuropathology
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Neurology. Diseases of the nervous system ; RC346-429
    Subject code 610
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top