LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Optimizing large‐scale autologous human keratinocyte sheets for major burns—Toward an animal‐free production and a more accessible clinical application

    Laura Frese / Salim Elias Darwiche / Myrna Elisabeth Gunning / Simon Philipp Hoerstrup / Brigitte von Rechenberg / Pietro Giovanoli / Maurizio Calcagni

    Health Science Reports, Vol 5, Iss 1, Pp n/a-n/a (2022)

    2022  

    Abstract: Abstract Background and Aims Autologous keratinocyte sheets constitute an important component of the burn wound treatment toolbox available to a surgeon and can be considered a life‐saving procedure for patients with severe burns over 50% of their total ... ...

    Abstract Abstract Background and Aims Autologous keratinocyte sheets constitute an important component of the burn wound treatment toolbox available to a surgeon and can be considered a life‐saving procedure for patients with severe burns over 50% of their total body surface area. Large‐scale keratinocyte sheet cultivation still fundamentally relies on the use of animal components such as inactivated murine 3T3 fibroblasts as feeders, animal‐derived enzymes such as trypsin, as well as media components such as fetal bovine serum (FBS). This study was therefore aimed to optimize autologous keratinocyte sheets by comparing various alternatives to critical components in their production. Methods Human skin samples were retrieved from remnant operative tissues. Cell isolation efficiency and viability were investigated by comparing the efficacy of porcine‐derived trypsin and animal‐free enzymes (Accutase and TrypLESelect). The subsequent expansion of the cells and the keratinocyte sheet formation was analyzed, comparing various cell culture substrates (inactivated murine 3T3 fibroblasts, inactivated human fibroblasts, Collagen I or plain tissue culture plastic), as well as media containing serum or chemically defined animal‐free media. Results The cell isolation step showed clear cell yield advantages when using porcine‐derived trypsin, compared to animal‐free alternatives. The keratinocyte sheets produced using animal‐free serum were similar to those produced using 3T3 feeder layer and FBS‐containing medium, particularly in mechanical integrity as all grafts were liftable. In addition, sheets grown on collagen in an animal‐free medium showed indications of advantages in homogeneity, speed, reduced variability, and differentiation status compared to the other growth conditions investigated. Most importantly, the procedure was compatible with the up‐scaling requirements of major burn wound treatments. Conclusion This study demonstrated that animal‐free components could be used successfully to reduce the risk profile of ...
    Keywords autograft ; epidermal skin engineering ; keratinocytes ; process development ; xenofree ; Medicine ; R
    Subject code 630
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A three-dimensional engineered artery model for in vitro atherosclerosis research.

    Jérôme Robert / Benedikt Weber / Laura Frese / Maximilian Y Emmert / Dörthe Schmidt / Arnold von Eckardstein / Lucia Rohrer / Simon P Hoerstrup

    PLoS ONE, Vol 8, Iss 11, p e

    2013  Volume 79821

    Abstract: The pathogenesis of atherosclerosis involves dysfunctions of vascular endothelial cells and smooth muscle cells as well as blood borne inflammatory cells such as monocyte-derived macrophages. In vitro experiments towards a better understanding of these ... ...

    Abstract The pathogenesis of atherosclerosis involves dysfunctions of vascular endothelial cells and smooth muscle cells as well as blood borne inflammatory cells such as monocyte-derived macrophages. In vitro experiments towards a better understanding of these dysfunctions are typically performed in two-dimensional cell culture systems. However, these models lack both the three-dimensional structure and the physiological pulsatile flow conditions of native arteries. We here describe the development and initial characterization of a tissue engineered artery equivalent, which is composed of human primary endothelial and smooth muscle cells and is exposed to flow in vitro. Histological analyses showed formation of a dense tissue composed of a tight monolayer of endothelial cells supported by a basement membrane and multiple smooth muscle cell layers. Both low (LDL) and high density lipoproteins (HDL) perfused through the artery equivalent were recovered both within endothelial cells and in the sub-endothelial intima. After activation of the endothelium with either tumour necrosis factor alpha (TNFα) or LDL, monocytes circulated through the model were found to adhere to the activated endothelium and to transmigrate into the intima. In conclusion, the described tissue engineered human artery equivalent model represents a significant step towards a relevant in vitro platform for the systematic assessment of pathogenic processes in atherosclerosis independently of any systemic factors.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo.

    Sebastian Frese / Matthias Ruebner / Frank Suhr / Thierry M Konou / Kim A Tappe / Marco Toigo / Hans H Jung / Christine Henke / Ruth Steigleder / Pamela L Strissel / Hanna Huebner / Matthias W Beckmann / Piet van der Keylen / Benedikt Schoser / Thorsten Schiffer / Laura Frese / Wilhelm Bloch / Reiner Strick

    PLoS ONE, Vol 10, Iss 7, p e

    2015  Volume 0132099

    Abstract: Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental ... ...

    Abstract Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell cultures, resembling muscle biopsies of cyclists. ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top