LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Development of a combined empirical index for a 5-day forecast of heavy precipitation over the Bernese Alps

    Liliane Nguyen / Mario Rohrer / Manfred Schwarb / Markus Stoffel

    Environment International, Vol 135, Iss , Pp - (2020)

    2020  

    Abstract: The Bernese Alps are a region that is very prone for the initiation of thunderstorms. In fact, the flow and convergence of air and water vapor from the Swiss Plateau to the Swiss Alps is frequently favouring the formation of isolated rainfall events, ... ...

    Abstract The Bernese Alps are a region that is very prone for the initiation of thunderstorms. In fact, the flow and convergence of air and water vapor from the Swiss Plateau to the Swiss Alps is frequently favouring the formation of isolated rainfall events, which then may cause loss and damage in settlements. Due to the complex topography of the Bernese Alps, the forecasting and nowcasting of heavy convective precipitation remain challenging. A critical need therefore exists for the development of new forecasting tools so as to improve the predictability of convective precipitation events, also with the aim to alert first responders and to subsequently reduce damage. This study aims at developing an empirical index for the forecasting of heavy precipitation events in the Bernese Alps by using two reanalysis datasets, ECMWF’s ERA-Interim and NASA’s MERRA-2; in addition, the ICON-EU model is employed here to test and verify the index for the 2018 summer period. Our approach is based on the calculation of several convective indices as well as on the assessment of their relative forecast skills using a dichotomous scheme. The Heavy Precipitation Index (HPI) is then defined by combining the best performing combination of convective indices. HPI is aimed at forecasting heavy precipitation events over the Bernese Alps. We show that the combination of several indices, including DCI or KI, have a better capability to forecast heavy precipitation in the Bernese Alps than has the commonly used CAPE. Therefore, HPI should be seen as a pre-alert index when it comes to assist first responders in situations of crisis and in the process of decision making. Keywords: Heavy precipitation, Convective indices, CAPE, Heavy Precipitation Index, Bernese Alps, Reanalysis
    Keywords Environmental sciences ; GE1-350
    Subject code 910
    Language English
    Publishing date 2020-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Drying conditions in Switzerland – indication from a 35-year Landsat time-series analysis of vegetation water content estimates to support SDGs

    Charlotte Poussin / Alexandrine Massot / Christian Ginzler / Dominique Weber / Bruno Chatenoux / Pierre Lacroix / Thomas Piller / Liliane Nguyen / Gregory Giuliani

    Big Earth Data, Vol 5, Iss 4, Pp 445-

    2021  Volume 475

    Abstract: Exacerbated by climate change, Europe has experienced series of hot and dry summer since the beginning of the 21st century. The importance of land conditions became an international concern with a dedicated sustainable development goal (SDG), the SDG 15. ...

    Abstract Exacerbated by climate change, Europe has experienced series of hot and dry summer since the beginning of the 21st century. The importance of land conditions became an international concern with a dedicated sustainable development goal (SDG), the SDG 15. It calls for developing and finding innovative solutions to follow and evaluate impacts of changing land conditions induced by various driving forces. In Switzerland, drought risk will significantly increase in the coming decades with severe consequences on agriculture, energy production and vegetation. In this paper, we used a 35-year satellite-derived annual and seasonal times-series of normalized difference water index (NDWI) to follow vegetation water content evolution at different spatial and temporal scales across Switzerland and related them to temperature and precipitation to investigate possible responses of changing climatic conditions. Results indicate that there is a small and slow drying tendency at the country scale with a NDWI mean decreasing slope of −0.22%/year for the 23% significant pixels across Switzerland. This tendency is mostly visible below 2000 m above sea level (m.a.s.l.) and in all biogeographical regions. The Southern Alps regions appear to be more responsive to changing drying conditions with a significant and slight negative NDWI trend (−0.39%/year) over the last 35 years. Moreover, NDWI values are mostly a function of temperature at elevations below the tree line rather than precipitation. Findings suggest that multi-annual and seasonal NDWI can be a valuable indicator to monitor vegetation water content at different scales, but other components such as land cover type and evapotranspiration should be considered to better characterize NDWI variability. Satellite Earth Observations data can provide valuable complementary observations for national statistics on the ecological state of vegetation to support SDG 15 to monitor land affected by drying conditions.
    Keywords climate change ; vegetation ; ndwi ; landsat ; drought ; sdg 15 ; land degradation ; ecosystems ; earth observation ; big earth data ; switzerland ; Geography. Anthropology. Recreation ; G ; Geology ; QE1-996.5
    Subject code 550
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher Taylor & Francis Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top