LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article: Direct visualization of emergent metastatic features within an

    Anandi, Libi / Garcia, Jeremy / Ros, Manon / Janska, Libuse / Liu, Josephine / Carmona-Fontaine, Carlos

    bioRxiv : the preprint server for biology

    2023  

    Abstract: Preventing tumor cells from acquiring metastatic properties would significantly reduce cancer mortality. However, due to the complex nature of this process, it remains one of the most poorly understood and untreatable aspects of cancer. Ischemia and ... ...

    Abstract Preventing tumor cells from acquiring metastatic properties would significantly reduce cancer mortality. However, due to the complex nature of this process, it remains one of the most poorly understood and untreatable aspects of cancer. Ischemia and hypoxia in solid tumors are requisite in metastasis formation -- conditions that arise far from functional blood vessels and deep within tumor tissues. These secluded locations impede the observation of pre-metastatic tumor cells and their interactions with stromal cells, which are also critical in the initiation of this process. Thus, the initiation of metastasis has been incredibly difficult to model in the lab and to observe in vivo. We present an ex vivo model of the tumor microenvironment, called 3MIC, which overcomes these experimental challenges and enables the observation of ischemic tumor cells in their native 3D context with high spatial and temporal resolutions. The 3MIC recreates ischemic conditions in the tumor microenvironment and facilitates the co-culture of different cell types. Using live microscopy, we showed that ischemia, but not hypoxia alone, increases the motility and invasive properties of cells derived from primary tumors. These changes are phenotypic and can occur without clonal selection. We directly observed how interactions with stromal cells such as macrophages increased tumor invasion in conjunction with the effects of an ischemic microenvironment. Finally, we tested the effects of chemotherapy drugs under different metabolic microenvironments and found that ischemic tumor cells are more resistant to paclitaxel, possibly due to a metabolic resistance mechanism. Overall, the 3MIC is a cost-effective system that allows for the dissection of the complexity of the tumor microenvironment and direct observation of the emergence of metastasis, as well as the testing of treatments that may halt this process.
    Language English
    Publishing date 2023-04-28
    Publishing country United States
    Document type Preprint
    DOI 10.1101/2023.01.09.523294
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: A Deep Learning Model for Screening Computed Tomography Imaging for Thyroid Eye Disease and Compressive Optic Neuropathy.

    Lin, Lisa Y / Zhou, Paul / Shi, Min / Lu, Jonathan E / Jeon, Soomin / Kim, Doyun / Liu, Josephine M / Wang, Mengyu / Do, Synho / Lee, Nahyoung Grace

    Ophthalmology science

    2023  Volume 4, Issue 1, Page(s) 100412

    Abstract: Purpose: Thyroid eye disease (TED) is an autoimmune condition with an array of clinical manifestations, which can be complicated by compressive optic neuropathy. It is important to identify patients with TED early to ensure close monitoring and ... ...

    Abstract Purpose: Thyroid eye disease (TED) is an autoimmune condition with an array of clinical manifestations, which can be complicated by compressive optic neuropathy. It is important to identify patients with TED early to ensure close monitoring and treatment to prevent potential permanent disability or vision loss. Deep learning artificial intelligence (AI) algorithms have been utilized in ophthalmology and in other fields of medicine to detect disease. This study aims to introduce a deep learning model to evaluate orbital computed tomography (CT) images for the presence of TED and potential compressive optic neuropathy.
    Design: Retrospective review and deep learning algorithm modeling.
    Subjects: Patients with TED with dedicated orbital CT scans and with an examination by an oculoplastic surgeon over a 10-year period at a single academic institution. Patients with no TED and normal CTs were used as normal controls. Those with other diagnoses, such as tumors or other inflammatory processes, were excluded.
    Methods: Orbital CTs were preprocessed and adopted for the Visual Geometry Group-16 network to distinguish patients with no TED, mild TED, and severe TED with compressive optic neuropathy. The primary model included training and testing of all 3 conditions. Binary model performance was also evaluated. An oculoplastic surgeon was also similarly tested with single and serial images for comparison.
    Main outcome measures: Accuracy of deep learning model discernment of region of interest for CT scans to distinguish TED versus normal control, as well as TED with clinical signs of optic neuropathy.
    Results: A total of 1187 photos from 141 patients were used to develop the AI model. The primary model trained on patients with no TED, mild TED, and severe TED had 89.5% accuracy (area under the curve: range, 0.96-0.99) in distinguishing patients with these clinical categories. In comparison, testing of an oculoplastic surgeon in these 3 categories showed decreased accuracy (70.0% accuracy in serial image testing).
    Conclusions: The deep learning model developed in the study can accurately detect TED and further detect TED with clinical signs of optic neuropathy based on orbital CT. The model proved superior compared with human expert grading. With further optimization and validation, this TED deep learning model could help guide frontline health care providers in the detection of TED and help stratify the urgency of a referral to an oculoplastic surgeon and endocrinologist.
    Financial disclosures: The authors have no proprietary or commercial interest in any materials discussed in this article.
    Language English
    Publishing date 2023-10-13
    Publishing country Netherlands
    Document type Journal Article
    ISSN 2666-9145
    ISSN (online) 2666-9145
    DOI 10.1016/j.xops.2023.100412
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article: Patent law for the dermatologist.

    Mei, Dan Feng / Liu, Josephine

    Seminars in cutaneous medicine and surgery

    2013  Volume 32, Issue 4, Page(s) 242–246

    Abstract: An exciting discovery in the laboratory may translate to a commercial product. How does the patent system fit into the picture? We first discuss the circumstances under which an invention is granted a patent. What is the purpose of a patent and what are ... ...

    Abstract An exciting discovery in the laboratory may translate to a commercial product. How does the patent system fit into the picture? We first discuss the circumstances under which an invention is granted a patent. What is the purpose of a patent and what are the functions of the patent system? Who can apply for a patent? What makes an invention patentable? A patent does not automatically grant a right to make or sell a product. This is because multiple patents can cover a single pharmaceutical product. Understanding the patent landscape covering a product of interest is key to evaluating the risk of infringing another's exclusivity rights. We use a hypothetical example relating to skin cancer to guide a discussion of patent law.
    MeSH term(s) Dermatology/legislation & jurisprudence ; Drug Discovery ; Humans ; Patents as Topic/legislation & jurisprudence ; United States
    Language English
    Publishing date 2013-09-20
    Publishing country United States
    Document type Journal Article
    ZDB-ID 1355511-x
    ISSN 1558-0768 ; 1085-5629
    ISSN (online) 1558-0768
    ISSN 1085-5629
    DOI 10.12788/j.sder.0040
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article: Formulation patents and dermatology and obviousness.

    Mei, Dan-Feng / Liu, Josephine / Davitz, Michael A

    Pharmaceutics

    2011  Volume 3, Issue 4, Page(s) 914–922

    Abstract: Most patents covering dermatologic products contain patent claims directed to the pharmaceutical formulation of the product. Such patents, known as formulation patents, are vulnerable to attacks based on the legal argument that the formulations covered ... ...

    Abstract Most patents covering dermatologic products contain patent claims directed to the pharmaceutical formulation of the product. Such patents, known as formulation patents, are vulnerable to attacks based on the legal argument that the formulations covered are obvious over formulations already known prior to the filing of the patent application. Because obviousness is an important concept in patent law, recent court cases concerning obviousness and formulation patents were examined and discussed below. Courts have ruled that patent claims are obvious when features of the claimed formulation are found in the prior art, even if the features or characteristics of the formulation are not explicitly disclosed in the prior art. However, patentees have successfully overcome obviousness challenges where there were unexpected results or properties and/or the prior art taught away from the claimed invention.
    Language English
    Publishing date 2011-11-21
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2527217-2
    ISSN 1999-4923
    ISSN 1999-4923
    DOI 10.3390/pharmaceutics3040914
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article ; Online: A functional genomics screen identifying blood cell development genes in Drosophila by undergraduates participating in a course-based research experience.

    Evans, Cory J / Olson, John M / Mondal, Bama Charan / Kandimalla, Pratyush / Abbasi, Ariano / Abdusamad, Mai M / Acosta, Osvaldo / Ainsworth, Julia A / Akram, Haris M / Albert, Ralph B / Alegria-Leal, Elitzander / Alexander, Kai Y / Ayala, Angelica C / Balashova, Nataliya S / Barber, Rebecca M / Bassi, Harmanjit / Bennion, Sean P / Beyder, Miriam / Bhatt, Kush V /
    Bhoot, Chinmay / Bradshaw, Aaron W / Brannigan, Tierney G / Cao, Boyu / Cashell, Yancey Y / Chai, Timothy / Chan, Alex W / Chan, Carissa / Chang, Inho / Chang, Jonathan / Chang, Michael T / Chang, Patrick W / Chang, Stephen / Chari, Neel / Chassiakos, Alexander J / Chen, Iris E / Chen, Vivian K / Chen, Zheying / Cheng, Marsha R / Chiang, Mimi / Chiu, Vivian / Choi, Sharon / Chung, Jun Ho / Contreras, Liset / Corona, Edgar / Cruz, Courtney J / Cruz, Renae L / Dang, Jefferson M / Dasari, Suhas P / De La Fuente, Justin R O / Del Rio, Oscar M A / Dennis, Emily R / Dertsakyan, Petros S / Dey, Ipsita / Distler, Rachel S / Dong, Zhiqiao / Dorman, Leah C / Douglass, Mark A / Ehresman, Allysen B / Fu, Ivy H / Fua, Andrea / Full, Sean M / Ghaffari-Rafi, Arash / Ghani, Asmar Abdul / Giap, Bosco / Gill, Sonia / Gill, Zafar S / Gills, Nicholas J / Godavarthi, Sindhuja / Golnazarian, Talin / Goyal, Raghav / Gray, Ricardo / Grunfeld, Alexander M / Gu, Kelly M / Gutierrez, Natalia C / Ha, An N / Hamid, Iman / Hanson, Ashley / Hao, Celesti / He, Chongbin / He, Mengshi / Hedtke, Joshua P / Hernandez, Ysrael K / Hlaing, Hnin / Hobby, Faith A / Hoi, Karen / Hope, Ashley C / Hosseinian, Sahra M / Hsu, Alice / Hsueh, Jennifer / Hu, Eileen / Hu, Spencer S / Huang, Stephanie / Huang, Wilson / Huynh, Melanie / Javier, Carmen / Jeon, Na Eun / Ji, Sunjong / Johal, Jasmin / John, Amala / Johnson, Lauren / Kadakia, Saurin / Kakade, Namrata / Kamel, Sarah / Kaur, Ravinder / Khatra, Jagteshwar S / Kho, Jeffrey A / Kim, Caleb / Kim, Emily Jin-Kyung / Kim, Hee Jong / Kim, Hyun Wook / Kim, Jin Hee / Kim, Seong Ah / Kim, Woo Kyeom / Kit, Brian / La, Cindy / Lai, Jonathan / Lam, Vivian / Le, Nguyen Khoi / Lee, Chi Ju / Lee, Dana / Lee, Dong Yeon / Lee, James / Lee, Jason / Lee, Jessica / Lee, Ju-Yeon / Lee, Sharon / Lee, Terrence C / Lee, Victoria / Li, Amber J / Li, Jialing / Libro, Alexandra M / Lien, Irvin C / Lim, Mia / Lin, Jeffrey M / Liu, Connie Y / Liu, Steven C / Louie, Irene / Lu, Shijia W / Luo, William Y / Luu, Tiffany / Madrigal, Josef T / Mai, Yishan / Miya, Darron I / Mohammadi, Mina / Mohanta, Sayonika / Mokwena, Tebogo / Montoya, Tonatiuh / Mould, Dallas L / Murata, Mark R / Muthaiya, Janani / Naicker, Seethim / Neebe, Mallory R / Ngo, Amy / Ngo, Duy Q / Ngo, Jamie A / Nguyen, Anh T / Nguyen, Huy C X / Nguyen, Rina H / Nguyen, Thao T T / Nguyen, Vincent T / Nishida, Kevin / Oh, Seo-Kyung / Omi, Kristen M / Onglatco, Mary C / Almazan, Guadalupe Ortega / Paguntalan, Jahzeel / Panchal, Maharshi / Pang, Stephanie / Parikh, Harin B / Patel, Purvi D / Patel, Trisha H / Petersen, Julia E / Pham, Steven / Phan-Everson, Tien M / Pokhriyal, Megha / Popovich, Davis W / Quaal, Adam T / Querubin, Karl / Resendiz, Anabel / Riabkova, Nadezhda / Rong, Fred / Salarkia, Sarah / Sama, Nateli / Sang, Elaine / Sanville, David A / Schoen, Emily R / Shen, Zhouyang / Siangchin, Ken / Sibal, Gabrielle / Sin, Garuem / Sjarif, Jasmine / Smith, Christopher J / Soeboer, Annisa N / Sosa, Cristian / Spitters, Derek / Stender, Bryan / Su, Chloe C / Summapund, Jenny / Sun, Beatrice J / Sutanto, Christine / Tan, Jaime S / Tan, Nguon L / Tangmatitam, Parich / Trac, Cindy K / Tran, Conny / Tran, Daniel / Tran, Duy / Tran, Vina / Truong, Patrick A / Tsai, Brandon L / Tsai, Pei-Hua / Tsui, C Kimberly / Uriu, Jackson K / Venkatesh, Sanan / Vo, Maique / Vo, Nhat-Thi / Vo, Phuong / Voros, Timothy C / Wan, Yuan / Wang, Eric / Wang, Jeffrey / Wang, Michael K / Wang, Yuxuan / Wei, Siman / Wilson, Matthew N / Wong, Daniel / Wu, Elliott / Xing, Hanning / Xu, Jason P / Yaftaly, Sahar / Yan, Kimberly / Yang, Evan / Yang, Rebecca / Yao, Tony / Yeo, Patricia / Yip, Vivian / Yogi, Puja / Young, Gloria Chin / Yung, Maggie M / Zai, Alexander / Zhang, Christine / Zhang, Xiao X / Zhao, Zijun / Zhou, Raymond / Zhou, Ziqi / Abutouk, Mona / Aguirre, Brian / Ao, Chon / Baranoff, Alexis / Beniwal, Angad / Cai, Zijie / Chan, Ryan / Chien, Kenneth Chang / Chaudhary, Umar / Chin, Patrick / Chowdhury, Praptee / Dalie, Jamlah / Du, Eric Y / Estrada, Alec / Feng, Erwin / Ghaly, Monica / Graf, Rose / Hernandez, Eduardo / Herrera, Kevin / Ho, Vivien W / Honeychurch, Kaitlyn / Hou, Yurianna / Huang, Jo M / Ishii, Momoko / James, Nicholas / Jang, Gah-Eun / Jin, Daphne / Juarez, Jesse / Kesaf, Ayse Elif / Khalsa, Sat Kartar / Kim, Hannah / Kovsky, Jenna / Kuang, Chak Lon / Kumar, Shraddha / Lam, Gloria / Lee, Ceejay / Lee, Grace / Li, Li / Lin, Joshua / Liu, Josephine / Ly, Janice / Ma, Austin / Markovic, Hannah / Medina, Cristian / Mungcal, Jonelle / Naranbaatar, Bilguudei / Patel, Kayla / Petersen, Lauren / Phan, Amanda / Phung, Malcolm / Priasti, Nadiyah / Ruano, Nancy / Salim, Tanveer / Schnell, Kristen / Shah, Paras / Shen, Jinhua / Stutzman, Nathan / Sukhina, Alisa / Tian, Rayna / Vega-Loza, Andrea / Wang, Joyce / Wang, Jun / Watanabe, Rina / Wei, Brandon / Xie, Lillian / Ye, Jessica / Zhao, Jeffrey / Zimmerman, Jill / Bracken, Colton / Capili, Jason / Char, Andrew / Chen, Michel / Huang, Pingdi / Ji, Sena / Kim, Emily / Kim, Kenneth / Ko, Julie / Laput, Sean Louise G / Law, Sam / Lee, Sang Kuk / Lee, Olivia / Lim, David / Lin, Eric / Marik, Kyle / Mytych, Josh / O'Laughlin, Andie / Pak, Jensen / Park, Claire / Ryu, Ruth / Shinde, Ashwin / Sosa, Manny / Waite, Nick / Williams, Mane / Wong, Richard / Woo, Jocelyn / Woo, Jonathan / Yepuri, Vishaal / Yim, Dorothy / Huynh, Dan / Wijiewarnasurya, Dinali / Shapiro, Casey / Levis-Fitzgerald, Marc / Jaworski, Leslie / Lopatto, David / Clark, Ira E / Johnson, Tracy / Banerjee, Utpal

    G3 (Bethesda, Md.)

    2021  Volume 11, Issue 1

    Abstract: Undergraduate students participating in the UCLA Undergraduate Research Consortium for Functional Genomics (URCFG) have conducted a two-phased screen using RNA interference (RNAi) in combination with fluorescent reporter proteins to identify genes ... ...

    Abstract Undergraduate students participating in the UCLA Undergraduate Research Consortium for Functional Genomics (URCFG) have conducted a two-phased screen using RNA interference (RNAi) in combination with fluorescent reporter proteins to identify genes important for hematopoiesis in Drosophila. This screen disrupted the function of approximately 3500 genes and identified 137 candidate genes for which loss of function leads to observable changes in the hematopoietic development. Targeting RNAi to maturing, progenitor, and regulatory cell types identified key subsets that either limit or promote blood cell maturation. Bioinformatic analysis reveals gene enrichment in several previously uncharacterized areas, including RNA processing and export and vesicular trafficking. Lastly, the participation of students in this course-based undergraduate research experience (CURE) correlated with increased learning gains across several areas, as well as increased STEM retention, indicating that authentic, student-driven research in the form of a CURE represents an impactful and enriching pedagogical approach.
    MeSH term(s) Animals ; Blood Cells ; Drosophila/genetics ; Genomics/education ; Humans ; Students ; Universities
    Language English
    Publishing date 2021-02-12
    Publishing country England
    Document type Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 2629978-1
    ISSN 2160-1836 ; 2160-1836
    ISSN (online) 2160-1836
    ISSN 2160-1836
    DOI 10.1093/g3journal/jkaa028
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top