LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 12

Search options

  1. Article ; Online: Signatures of hybridization in Trypanosoma brucei.

    Christopher Kay / Lori Peacock / Tom A Williams / Wendy Gibson

    PLoS Pathogens, Vol 18, Iss 2, p e

    2022  Volume 1010300

    Abstract: Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) ... ...

    Abstract Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the ...
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 630
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Sequential production of gametes during meiosis in trypanosomes

    Lori Peacock / Chris Kay / Chloe Farren / Mick Bailey / Mark Carrington / Wendy Gibson

    Communications Biology, Vol 4, Iss 1, Pp 1-

    2021  Volume 10

    Abstract: Lori Peacock et al. report the sequence of meiosis in Trypanosoma brucei cells ...

    Abstract Lori Peacock et al. report the sequence of meiosis in Trypanosoma brucei cells from the salivary glands of tsetse flies using image analyses and expression of the cell fusion protein HAP2. From the recovered cell types and expression of HAP2 in meiotic intermediates, these results indicate that haploid gametes are produced sequentially.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Shape-shifting trypanosomes

    Lori Peacock / Christopher Kay / Mick Bailey / Wendy Gibson

    PLoS Pathogens, Vol 14, Iss 5, p e

    Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus.

    2018  Volume 1007043

    Abstract: Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their ... ...

    Abstract Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, ...
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 571
    Language English
    Publishing date 2018-05-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages.

    Virginia M Howick / Lori Peacock / Chris Kay / Clare Collett / Wendy Gibson / Mara K N Lawniczak

    PLoS Pathogens, Vol 18, Iss 3, p e

    2022  Volume 1010346

    Abstract: Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the ...

    Abstract Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterized by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. Further experiments are required to establish whether this protein, currently of unknown function, plays a role in gamete formation and/or fusion.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article: Microarchitecture of the tsetse fly proboscis

    Gibson, Wendy / Lori Peacock / Rachel Hutchinson

    Parasites & vectors. 2017 Dec., v. 10, no. 1

    2017  

    Abstract: BACKGROUND: Tsetse flies (genus Glossina) are large blood-sucking dipteran flies that are important as vectors of human and animal trypanosomiasis in sub-Saharan Africa. Tsetse anatomy has been well described, including detailed accounts of the ... ...

    Abstract BACKGROUND: Tsetse flies (genus Glossina) are large blood-sucking dipteran flies that are important as vectors of human and animal trypanosomiasis in sub-Saharan Africa. Tsetse anatomy has been well described, including detailed accounts of the functional anatomy of the proboscis for piercing host skin and sucking up blood. The proboscis also serves as the developmental site for the infective metacyclic stages of several species of pathogenic livestock trypanosomes that are inoculated into the host with fly saliva. To understand the physical environment in which these trypanosomes develop, we have re-examined the microarchitecture of the tsetse proboscis. RESULTS: We examined proboscises from male and female flies of Glossina pallidipes using light microscopy and scanning electron microscopy (SEM). Each proboscis was removed from the fly head and either examined intact or dissected into the three constituent components: Labrum, labium and hypopharynx. Our light and SEM images reaffirm earlier observations that the tsetse proboscis is a formidably armed weapon, well-adapted for piercing skin, and provide comparative data for G. pallidipes. In addition, the images reveal that the hypopharynx, the narrow tube that delivers saliva to the wound site, ends in a remarkably ornate and complex structure with around ten finger-like projections, each adorned with sucker-like protrusions, contradicting previous descriptions that show a simple, bevelled end like a hypodermic needle. The function of the finger-like projections is speculative; they appear to be flexible and may serve to protect the hypopharynx from influx of blood or microorganisms, or control the flow of saliva. Proboscises were examined after colonisation by Trypanosoma congolense savannah. Consistent with the idea that colonisation commences in the region nearest the foregut, the highest densities of trypanosomes were found in the region of the labrum proximal to the bulb, although high densities were also found in other regions of the labrum. Trypanosomes were visible through the thin wall of the hypopharynx by both light microscopy and SEM. CONCLUSIONS: We highlight the remarkable architecture of the tsetse proboscis, in particular the intricate structure of the distal end of the hypopharynx. Further work is needed to elucidate the function of this intriguing structure.
    Keywords Glossina pallidipes ; Trypanosoma congolense ; blood ; bulbs ; females ; foregut ; humans ; light microscopy ; livestock ; males ; microorganisms ; proboscis ; saliva ; savannas ; scanning electron microscopy ; trypanosomiasis ; Sub-Saharan Africa
    Language English
    Dates of publication 2017-12
    Size p. 430.
    Publishing place BioMed Central
    Document type Article
    ZDB-ID 2409480-8
    ISSN 1756-3305
    ISSN 1756-3305
    DOI 10.1186/s13071-017-2367-2
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  6. Article ; Online: The influence of sex and fly species on the development of trypanosomes in tsetse flies.

    Lori Peacock / Vanessa Ferris / Mick Bailey / Wendy Gibson

    PLoS Neglected Tropical Diseases, Vol 6, Iss 2, p e

    2012  Volume 1515

    Abstract: Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, ... ...

    Abstract Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG), proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes.
    Keywords Arctic medicine. Tropical medicine ; RC955-962 ; Public aspects of medicine ; RA1-1270
    Subject code 590
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Wendy Gibson / Lori Peacock / Vanessa Ferris / Katrin Fischer / Jennifer Livingstone / James Thomas / Mick Bailey

    PLoS Neglected Tropical Diseases, Vol 9, Iss 3, p e

    2015  Volume 0003665

    Abstract: Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A ... ...

    Abstract Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.
    Keywords Arctic medicine. Tropical medicine ; RC955-962 ; Public aspects of medicine ; RA1-1270
    Language English
    Publishing date 2015-03-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor

    Olivia J. S. Macleod / Alexander D. Cook / Helena Webb / Mandy Crow / Roisin Burns / Maria Redpath / Stefanie Seisenberger / Camilla E. Trevor / Lori Peacock / Angela Schwede / Nicola Kimblin / Amanda F. Francisco / Julia Pepperl / Steve Rust / Paul Voorheis / Wendy Gibson / Martin C. Taylor / Matthew K. Higgins / Mark Carrington

    Nature Communications, Vol 13, Iss 1, Pp 1-

    2022  Volume 10

    Abstract: Trypanosomes evade the immune response through antigenic variation of a surface coat containing variant surface glycoproteins (VSG). They also express invariant surface glycoproteins (ISGs), which are less well understood. Here, Macleod et al. show that ... ...

    Abstract Trypanosomes evade the immune response through antigenic variation of a surface coat containing variant surface glycoproteins (VSG). They also express invariant surface glycoproteins (ISGs), which are less well understood. Here, Macleod et al. show that ISG65 of T. brucei is a receptor for complement component 3. They provide the crystal structure of T. brucei ISG65 in complex with complement C3d and show evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance in vivo.
    Keywords Science ; Q
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor

    Harriet Lane-Serff / Paula MacGregor / Lori Peacock / Olivia JS Macleod / Christopher Kay / Wendy Gibson / Matthew K Higgins / Mark Carrington

    eLife, Vol

    2016  Volume 5

    Abstract: The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. ... ...

    Abstract The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.
    Keywords trypanosome ; congolense ; brucei ; haptoglobin-haemoglobin receptor ; evolution ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2016-04-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies

    Olivia J. S. Macleod / Jean-Mathieu Bart / Paula MacGregor / Lori Peacock / Nicholas J. Savill / Svenja Hester / Sophie Ravel / Jack D. Sunter / Camilla Trevor / Steven Rust / Tristan J. Vaughan / Ralph Minter / Shabaz Mohammed / Wendy Gibson / Martin C. Taylor / Matthew K. Higgins / Mark Carrington

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 12

    Abstract: African trypanosome infections can persist for years, but immune evasion mechanisms are not fully understood. Here, Macleod et al. identify a trypanosome receptor for mammalian factor H, a negative regulator of the alternative complement pathway, that ... ...

    Abstract African trypanosome infections can persist for years, but immune evasion mechanisms are not fully understood. Here, Macleod et al. identify a trypanosome receptor for mammalian factor H, a negative regulator of the alternative complement pathway, that increases parasite transmission to tsetse flies.
    Keywords Science ; Q
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top