LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Impact of a reduced iodine load with deep learning reconstruction on abdominal MDCT.

Ludes, Gaspard / Ohana, Mickael / Labani, Aissam / Meyer, Nicolas / Moliére, Sébastien / Roy, Catherine

Medicine

2023  Volume 102, Issue 35, Page(s) e34579

Abstract: To evaluate the impact of a reduced iodine load using deep learning reconstruction (DLR) on the hepatic parenchyma compared to conventional iterative reconstruction (hybrid IR) and its consequence on the radiation dose and image quality. This ... ...

Abstract To evaluate the impact of a reduced iodine load using deep learning reconstruction (DLR) on the hepatic parenchyma compared to conventional iterative reconstruction (hybrid IR) and its consequence on the radiation dose and image quality. This retrospective monocentric intraindividual comparison study included 66 patients explored at the portal phase using different multidetector computed tomography parameters: Group A, hybrid IR algorithm (hybrid IR) and a nonionic low-osmolality contrast agent (350 mgI/mL); Group B, DLR algorithm (DLR) and a nonionic iso-osmolality contrast agent (270 mgI/mL). We recorded the attenuation of the liver parenchyma, image quality, and radiation dose parameters. The mean hounsfield units (HU) value of the liver parenchyma was significantly lower in group B, at 105.9 ± 10.9 HU versus 118.5 ± 14.6 HU in group A. However, the 90%IC of mean liver attenuation in the group B (DLR) was between 100.8 HU and 109.3 HU. The signal-to-noise ratio of the liver parenchyma was significantly higher on DLR images, increasing by 56%. However, for both the contrast-to-noise ratio (CNR) and CNR liver/PV no statistical difference was found, even if the CNR liver/PV ratio was slightly higher for group A. The mean dose-length product and computed tomography dose index volume values were significantly lower with DLR, corresponding to a radiation dose reduction of 36% for the DLR. Using a DLR algorithm for abdominal multidetector computed tomography with a low iodine load can provide sufficient enhancement of the liver parenchyma up to 100 HU in addition to the advantages of a higher image quality, a better signal-to-noise ratio and a lower radiation dose.
MeSH term(s) Humans ; Multidetector Computed Tomography ; Contrast Media ; Deep Learning ; Retrospective Studies ; Iodine
Chemical Substances Contrast Media ; Iodine (9679TC07X4)
Language English
Publishing date 2023-09-01
Publishing country United States
Document type Journal Article
ZDB-ID 80184-7
ISSN 1536-5964 ; 0025-7974
ISSN (online) 1536-5964
ISSN 0025-7974
DOI 10.1097/MD.0000000000034579
Shelf mark
Ua VI Zs.171: Show issues Location:
Je nach Verfügbarkeit (siehe Angabe bei Bestand)
bis Jg. 2021: Bestellungen von Artikeln über das Online-Bestellformular
ab Jg. 2022: Lesesaal (EG)
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top