LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 17

Search options

  1. Article ; Online: Cáncer gástrico

    Pelayo Correa / M. Blanca Piazuelo

    Revista Colombiana de Gastroenterología, Vol 25, Iss 4, Pp 334-

    el enigma colombiano Gastric cancer: The colombian enigma

    2010  Volume 337

    Keywords Diseases of the digestive system. Gastroenterology ; RC799-869 ; Specialties of internal medicine ; RC581-951 ; Internal medicine ; RC31-1245 ; Medicine ; R ; DOAJ:Gastroenterology ; DOAJ:Medicine (General) ; DOAJ:Health Sciences
    Language Spanish
    Publisher Asociación Colombiana de Gastroenterología
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Myeloid deletion of talin-1 reduces mucosal macrophages and protects mice from colonic inflammation

    Yvonne L. Latour / Kara M. McNamara / Margaret M. Allaman / Daniel P. Barry / Thaddeus M. Smith / Mohammad Asim / Kamery J. Williams / Caroline V. Hawkins / Justin Jacobse / Jeremy A. Goettel / Alberto G. Delgado / M. Blanca Piazuelo / M. Kay Washington / Alain P. Gobert / Keith T. Wilson

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 11

    Abstract: Abstract The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors ... ...

    Abstract Abstract The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570 ; 616
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors

    Rachel E. Brown / Justin Jacobse / Shruti A. Anant / Koral M. Blunt / Bob Chen / Paige N. Vega / Chase T. Jones / Jennifer M. Pilat / Frank Revetta / Aidan H. Gorby / Kristy R. Stengel / Yash A. Choksi / Kimmo Palin / M. Blanca Piazuelo / Mary Kay Washington / Ken S. Lau / Jeremy A. Goettel / Scott W. Hiebert / Sarah P. Short /
    Christopher S. Williams

    JCI Insight, Vol 7, Iss

    2022  Volume 10

    Abstract: Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional ... ...

    Abstract Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium–induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box–binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein–mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16–/– colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
    Keywords Cell biology ; Gastroenterology ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher American Society for Clinical investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori.

    Beverly R E A Dixon / Jana N Radin / M Blanca Piazuelo / Diana C Contreras / Holly M Scott Algood

    PLoS ONE, Vol 11, Iss 2, p e

    2016  Volume 0148514

    Abstract: Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune ... ...

    Abstract Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP), lipocalin (LCN) and some β-defensins in both human and primary mouse gastric epithelial cells (GEC) and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Iron deficiency linked to altered bile acid metabolism promotes Helicobacter pylori–induced inflammation–driven gastric carcinogenesis

    Jennifer M. Noto / M. Blanca Piazuelo / Shailja C. Shah / Judith Romero-Gallo / Jessica L. Hart / Chao Di / James D. Carmichael / Alberto G. Delgado / Alese E. Halvorson / Robert A. Greevy / Lydia E. Wroblewski / Ayushi Sharma / Annabelle B. Newton / Margaret M. Allaman / Keith T. Wilson / M. Kay Washington / M. Wade Calcutt / Kevin L. Schey / Bethany P. Cummings /
    Charles R. Flynn / Joseph P. Zackular / Richard M. Peek Jr.

    The Journal of Clinical Investigation, Vol 132, Iss

    2022  Volume 10

    Abstract: Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these ... ...

    Abstract Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these phenotypes were not driven by alterations in the gastric microbiota; however, discovery-based and targeted metabolomics revealed that bile acids were significantly altered in H. pylori–infected mice with iron deficiency, with significant upregulation of deoxycholic acid (DCA), a carcinogenic bile acid. The severity of gastric injury was further augmented when H. pylori–infected mice were treated with DCA, and, in vitro, DCA increased translocation of the H. pylori oncoprotein CagA into host cells. Conversely, bile acid sequestration attenuated H. pylori–induced injury under conditions of iron deficiency. To translate these findings to human populations, we evaluated the association between bile acid sequestrant use and gastric cancer risk in a large human cohort. Among 416,885 individuals, a significant dose-dependent reduction in risk was associated with cumulative bile acid sequestrant use. Further, expression of the bile acid receptor transmembrane G protein–coupled bile acid receptor 5 (TGR5) paralleled the severity of carcinogenic lesions in humans. These data demonstrate that increased H. pylori–induced injury within the context of iron deficiency is tightly linked to altered bile acid metabolism, which may promote gastric carcinogenesis.
    Keywords Gastroenterology ; Infectious disease ; Medicine ; R
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia

    Mohammed Soutto / Zheng Chen / Ajaz A. Bhat / Lihong Wang / Shoumin Zhu / Ahmed Gomaa / Andreia Bates / Nadeem S. Bhat / Dunfa Peng / Abbes Belkhiri / M. Blanca Piazuelo / M. Kay Washington / Xi Chen Steven / Richard Peek / Wael El-Rifai

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 15

    Abstract: Trefoil factor 1 (TFF1) is a protein secreted by the gastric mucosa that protects against gastric tumourigenesis. Here, the authors show that TFF1 inhibits the oncogenic inflammatory response and IL-6-mediated STAT3 activation by interfering with the ... ...

    Abstract Trefoil factor 1 (TFF1) is a protein secreted by the gastric mucosa that protects against gastric tumourigenesis. Here, the authors show that TFF1 inhibits the oncogenic inflammatory response and IL-6-mediated STAT3 activation by interfering with the binding of IL6 to its receptor IL6Rα.
    Keywords Science ; Q
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia

    Mohammed Soutto / Zheng Chen / Ajaz A. Bhat / Lihong Wang / Shoumin Zhu / Ahmed Gomaa / Andreia Bates / Nadeem S. Bhat / Dunfa Peng / Abbes Belkhiri / M. Blanca Piazuelo / M. Kay Washington / Xi Chen Steven / Richard Peek / Wael El-Rifai

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 15

    Abstract: Trefoil factor 1 (TFF1) is a protein secreted by the gastric mucosa that protects against gastric tumourigenesis. Here, the authors show that TFF1 inhibits the oncogenic inflammatory response and IL-6-mediated STAT3 activation by interfering with the ... ...

    Abstract Trefoil factor 1 (TFF1) is a protein secreted by the gastric mucosa that protects against gastric tumourigenesis. Here, the authors show that TFF1 inhibits the oncogenic inflammatory response and IL-6-mediated STAT3 activation by interfering with the binding of IL6 to its receptor IL6Rα.
    Keywords Science ; Q
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Hypusination Orchestrates the Antimicrobial Response of Macrophages

    Alain P. Gobert / Jordan L. Finley / Yvonne L. Latour / Mohammad Asim / Thaddeus M. Smith / Thomas G. Verriere / Daniel P. Barry / Margaret M. Allaman / Alberto G. Delagado / Kristie L. Rose / M. Wade Calcutt / Kevin L. Schey / Johanna C. Sierra / M. Blanca Piazuelo / Raghavendra G. Mirmira / Keith T. Wilson

    Cell Reports, Vol 33, Iss 11, Pp 108510- (2020)

    2020  

    Abstract: Summary: Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor ...

    Abstract Summary: Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.
    Keywords macrophages ; bacterial infection ; innate immunity ; hypusine ; polyamines ; Helicobacter pylori ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article: Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection

    Hardbower, Dana M / Keith T. Wilson / M. Blanca Piazuelo / Mohammad Asim / Nuruddeen D. Lewis / Robert A. Casero Jr / Rupesh Chaturvedi / Thomas Verriere / Tracy Murray-Stewart

    Amino acids. 2016 Oct., v. 48, no. 10

    2016  

    Abstract: We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 ⁻/⁠...

    Abstract We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 ⁻/⁻ mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 ⁻/⁻ to Nos2 ⁻/⁻ mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 ⁻/⁻ and Arg2 ⁻/⁻ ;Nos2 ⁻/⁻ mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 ⁻/⁻ mice demonstrated enhanced M1 macrophage activation, Nos2 ⁻/⁻ and Arg2 ⁻/⁻ ;Nos2 ⁻/⁻ mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 ⁻/⁻, but not Nos2 ⁻/⁻ or Arg2 ⁻/⁻ ;Nos2 ⁻/⁻ mice. Gastric tissues from infected Arg2 ⁻/⁻ mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N ¹-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.
    Keywords adenosylmethionine decarboxylase ; arginase ; chemokine CXCL1 ; chemokine CXCL2 ; gastritis ; Helicobacter pylori ; immune evasion ; inducible nitric oxide synthase ; inflammation ; interferon-gamma ; interleukin-17 ; macrophage activation ; macrophages ; metabolism ; mice ; microbial load ; nitric oxide ; ornithine decarboxylase ; spermidine ; spermine ; T-lymphocytes
    Language English
    Dates of publication 2016-10
    Size p. 2375-2388.
    Publishing place Springer Vienna
    Document type Article
    ZDB-ID 1121341-3
    ISSN 1438-2199 ; 0939-4451
    ISSN (online) 1438-2199
    ISSN 0939-4451
    DOI 10.1007/s00726-016-2231-2
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  10. Article ; Online: Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation

    Ge Wang / Judith Romero-Gallo / Stéphane L. Benoit / M. Blanca Piazuelo / Ricardo L. Dominguez / Douglas R. Morgan / Richard M. Peek / Robert J. Maier

    mBio, Vol 7, Iss 4, p e01022-

    2016  Volume 16

    Abstract: A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent ... ...

    Abstract A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans.
    Keywords Science ; Q ; Microbiology ; QR1-502
    Subject code 570
    Language English
    Publishing date 2016-08-01T00:00:00Z
    Publisher American Society for Microbiology
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top