LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 18

Search options

  1. Article ; Online: Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease

    Paul Dietl / Manfred Frick

    Cells, Vol 11, Iss 45, p

    2022  Volume 45

    Abstract: The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of ... ...

    Abstract The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X 4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
    Keywords lysosome related organelle (LRO) ; surfactant ; alveolus ; exocytosis ; purinergic signaling ; ivermectin ; Biology (General) ; QH301-705.5
    Subject code 572
    Language English
    Publishing date 2022-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Actin and Myosin in Non-Neuronal Exocytosis

    Pika Miklavc / Manfred Frick

    Cells, Vol 9, Iss 1455, p

    2020  Volume 1455

    Abstract: Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at ... ...

    Abstract Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
    Keywords secretion ; vesicle trafficking ; cell cortex ; actin coat ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2020-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Discovery of a drug to treat airway mucus hypersecretion

    Burton F. Dickey / Ying Lai / Manfred Frick / Axel T. Brunger

    Clinical and Translational Medicine, Vol 12, Iss 8, Pp n/a-n/a (2022)

    2022  

    Keywords Medicine (General) ; R5-920
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Insights Into Development and Progression of Idiopathic Pulmonary Fibrosis From Single Cell RNA Studies

    Julia Nemeth / Annika Schundner / Manfred Frick

    Frontiers in Medicine, Vol

    2020  Volume 7

    Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options. The current model suggests that chronic or repetitive “micro-injuries” of the alveolar epithelium lead to activation and proliferation of ... ...

    Abstract Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options. The current model suggests that chronic or repetitive “micro-injuries” of the alveolar epithelium lead to activation and proliferation of fibroblasts and excessive extracellular matrix (ECM) deposition. Disruption of alveolar type II (ATII) epithelial cell homeostasis and the characteristics of mesenchymal cell populations in IPF have received particular attention in recent years. Emerging data from single cell RNA sequencing (scRNAseq) analysis shed novel light on alterations in ATII cell progenitor dysfunction and the diversity of mesenchymal cells within the fibrotic lung. Within this minireview, we summarize the data from most recent human scRNAseq studies. We aim to collate the current knowledge on cellular plasticity and heterogeneity in the development and progression of IPF, effects of drug treatment on transcriptional changes. Finally, we provide a brief outlook on future challenges and promises for large scale sequencing studies in the development of novel therapeutics for IPF.
    Keywords fibroblast ; alveolar ; lung ; IPF ; ATII cells ; scRNA sequencing ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: P2 Purinergic Signaling in the Distal Lung in Health and Disease

    Eva Wirsching / Michael Fauler / Giorgio Fois / Manfred Frick

    International Journal of Molecular Sciences, Vol 21, Iss 4973, p

    2020  Volume 4973

    Abstract: The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, ... ...

    Abstract The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
    Keywords P2X receptor ; P2Y receptor ; ATP ; alveolus ; lung ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: In Vitro Measurements of Cellular Forces and their Importance in the Lung—From the Sub- to the Multicellular Scale

    Peter Kolb / Annika Schundner / Manfred Frick / Kay-E. Gottschalk

    Life, Vol 11, Iss 691, p

    2021  Volume 691

    Abstract: Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between ...

    Abstract Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung. However, altered mechanical properties or excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases. Characterizing the mechanical properties and forces that affect cell and tissue function is therefore necessary for understanding physiological and pathophysiological mechanisms. In recent years, multiple methods have been developed for cellular force measurements at multiple length scales, from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In this short review, we give a brief overview of the mechanical forces at play on the cellular level in the lung. We then focus on the technological aspects of measuring cellular forces at many length scales. We describe tools with a subcellular resolution and elaborate measurement techniques for collective multicellular units. Many of the technologies described are by no means restricted to lung research and have already been applied successfully to cells from various other tissues. However, integrating the knowledge gained from these multi-scale measurements in a unifying framework is still a major future challenge.
    Keywords lung ; force sensing ; mechanotransduction ; Science ; Q
    Subject code 612
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis

    David Alexander Christian Messerer / Hanna Schmidt / Manfred Frick / Markus Huber-Lang

    International Journal of Molecular Sciences, Vol 22, Iss 4, p

    2021  Volume 1699

    Abstract: Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. ...

    Abstract Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. However, excessive stimulation during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion, and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can become significantly activated by complement factors, cytokines, and other inflammatory mediators. Following stimulation, the cells respond with a defined (electro-)physiological pattern, including depolarization, calcium influx, and alkalization as well as with increased metabolic activity and polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first describe the ion transport proteins and aquaporins involved in the neutrophil ion–water fluxes in response to chemoattractants. We then relate ion and water flux to cellular functions with a focus on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered ion transport protein expression and activity in impaired cellular functions and cell death during systemic inflammation as in sepsis.
    Keywords neutrophil granulocytes ; calcium ; NADPH oxidase ; intracellular pH ; chemotaxis ; cell death ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Characterization and Pharmacological Inhibition of the Pore-Forming Clostridioides difficile CDTb Toxin

    Katharina Ernst / Marc Landenberger / Julian Nieland / Katharina Nørgaard / Manfred Frick / Giorgio Fois / Roland Benz / Holger Barth

    Toxins, Vol 13, Iss 390, p

    2021  Volume 390

    Abstract: The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, ... ...

    Abstract The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells. Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2 cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.
    Keywords pore-forming toxins ; transmembrane pore ; Clostridioides difficile ; bacterial binary AB-toxins ; CDT toxin ; pore blocker ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish

    Lars D. Maerz / Martin D. Burkhalter / Carolin Schilpp / Oliver H. Wittekindt / Manfred Frick / Melanie Philipp

    Communications Biology, Vol 2, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Lars Maerz et al. show that pharmacological inhibition of cholesterol synthesis in zebrafish embryos leads to organ malformations and dysfunctions in cilium formation and signaling. These findings together with alterations to the cilia transition zone ... ...

    Abstract Lars Maerz et al. show that pharmacological inhibition of cholesterol synthesis in zebrafish embryos leads to organ malformations and dysfunctions in cilium formation and signaling. These findings together with alterations to the cilia transition zone suggest an important role of cholesterol in cilia biogenesis and function.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Role of the C5a-C5a receptor axis in the inflammatory responses of the lungs after experimental polytrauma and hemorrhagic shock

    Shinjini Chakraborty / Veronika Eva Winkelmann / Sonja Braumüller / Annette Palmer / Anke Schultze / Bettina Klohs / Anita Ignatius / Axel Vater / Michael Fauler / Manfred Frick / Markus Huber-Lang

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 15

    Abstract: Abstract Singular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile ... ...

    Abstract Abstract Singular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top