LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 38

Search options

  1. Article ; Online: The Right to Ask, the Need to Answer—When Patients Meet Research

    Manuela Priolo / Marco Tartaglia

    International Journal of Environmental Research and Public Health, Vol 20, Iss 4573, p

    How to Cope with Time

    2023  Volume 4573

    Abstract: Reaching a diagnosis and its communication are two of the most meaningful events in the physician–patient relationship. When facing a disease, most of the patients’ expectations rely on the hope that their clinicians would be able to understand the cause ...

    Abstract Reaching a diagnosis and its communication are two of the most meaningful events in the physician–patient relationship. When facing a disease, most of the patients’ expectations rely on the hope that their clinicians would be able to understand the cause of their illness and eventually end it. Rare diseases are a peculiar subset of conditions in which the search for a diagnosis might reveal a long and painful journey scattered by doubts and requiring, in most cases, a long waiting time. For many individuals affected by a rare disease, turning to research might represent their last chance to obtain an answer to their questions. Time is the worst enemy, threatening to disrupt the fragile balance among affected individuals, their referring physicians, and researchers. It is consuming at all levels, draining economic, emotional, and social resources, and triggering unpredictable reactions in each stakeholder group. Managing waiting time is one of the most burdensome tasks for all the parties playing a role in the search for a diagnosis: the patients and their referring physicians urge to obtain a diagnosis in order to know the condition they are dealing with and establish proper management, respectively. On the other hand, researchers need to be objective and scientifically act to give a rigorous answer to their demands. While moving towards the same goal, patients, clinicians, and researchers might have different expectations and perceive the same waiting time as differently hard or tolerable. The lack of information on mutual needs and the absence of effective communication among the parties are the most common mechanisms of the failure of the therapeutic alliance that risk compromising the common goal of a proper diagnosis. In the landscape of modern medicine that goes faster and claims high standards of cure, rare diseases represent an exception where physicians and researchers should learn to cope with time in order to care for patients.
    Keywords rare diseases ; diagnosis ; physician-patient relationship ; diagnostic odyssey ; diagnostic delay ; orphan diseases ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD)

    Fiorella Colasuonno / Chiara Marioli / Marco Tartaglia / Enrico Bertini / Claudia Compagnucci / Sandra Moreno

    Biomedicines, Vol 10, Iss 1329, p

    Involvement of Energy Dysmetabolism and Cytoskeletal Derangement

    2022  Volume 1329

    Abstract: Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, ... ...

    Abstract Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial. Recent studies have highlighted concurrent pathogenic contribution of cellular energy dysmetabolism and cytoskeletal derangement. In this context, patient specific RTD models, based on induced pluripotent stem cell (iPSC) technology, have provided evidence of redox imbalance, involving mitochondrial and peroxisomal dysfunction. Such oxidative stress condition likely causes cytoskeletal perturbation, associated with impaired differentiation of RTD motor neurons. In this review, we discuss the most recent findings obtained using different RTD models. Relevantly, the integration of data from innovative iPSC-derived in vitro models and invertebrate in vivo models may provide essential information on RTD pathophysiology. Such novel insights are expected to suggest custom therapeutic strategies, especially for those patients unresponsive to high-dose riboflavin treatments.
    Keywords riboflavin transporter deficiency ; riboflavin ; fatty acid oxidation ; energy metabolism ; oxidative stress ; cytoskeleton ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Modeling PCDH19-CE

    Rossella Borghi / Valentina Magliocca / Marina Trivisano / Nicola Specchio / Marco Tartaglia / Enrico Bertini / Claudia Compagnucci

    International Journal of Molecular Sciences, Vol 23, Iss 3506, p

    From 2D Stem Cell Model to 3D Brain Organoids

    2022  Volume 3506

    Abstract: PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with ... ...

    Abstract PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
    Keywords PCDH19 ; iPSCs ; neurons ; brain organoids ; neurogenesis ; disease model ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Organizational Aspects of the Implementation and Use of Whole Genome Sequencing and Whole Exome Sequencing in the Pediatric Population in Italy

    Mario Cesare Nurchis / Gian Marco Raspolini / Aurora Heidar Alizadeh / Gerardo Altamura / Francesca Clementina Radio / Marco Tartaglia / Bruno Dallapiccola / Gianfranco Damiani

    Journal of Personalized Medicine, Vol 13, Iss 899, p

    Results of a Survey

    2023  Volume 899

    Abstract: This study explores the organizational aspects of whole genome sequencing (WGS) implementation for pediatric patients with suspected genetic disorders in Italy, comparing it with whole exome sequencing (WES). Health professionals’ opinions were collected ...

    Abstract This study explores the organizational aspects of whole genome sequencing (WGS) implementation for pediatric patients with suspected genetic disorders in Italy, comparing it with whole exome sequencing (WES). Health professionals’ opinions were collected through an internet-based survey and analyzed using a qualitative summative content analysis methodology. Among the 16 respondents, most were clinical geneticists performing only WES, while 5 also used WGS. The key differences identified include higher needs for analyzing genome rearrangements following WES, greater data storage and security requirements for WGS, and WGS only being performed in specific research studies. No difference was detected in centralization and decentralization issues. The main cost factors included genetic consultations, library preparation and sequencing, bioinformatic analysis, interpretation and confirmation, data storage, and complementary diagnostic investigations. Both WES and WGS decreased the need for additional diagnostic analyses when not used as last-resort tests. Organizational aspects were similar for WGS and WES, but economic evidence gaps may exist for WGS in clinical settings. As sequencing costs decline, WGS will likely replace WES and traditional genetic testing. Tailored genomic policies and cost-effectiveness analyses are needed for WGS implementation in health systems. WGS shows promise for enhancing genetics knowledge and expediting diagnoses for pediatric patients with genetic disorders.
    Keywords pediatric population ; whole genome sequencing ; whole exome sequencing ; organizational issues ; survey ; Medicine ; R
    Language English
    Publishing date 2023-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos

    Martina Venditti / Catia Pedalino / Marion Rosello / Giulia Fasano / Malo Serafini / Céline Revenu / Filippo Del Bene / Marco Tartaglia / Antonella Lauri

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 12

    Abstract: Abstract Current genetic modification and phenotyping methods in teleost fish allow detailed investigation of vertebrate mechanisms of development, modeling of specific aspects of human diseases and efficient testing of drugs at an organ/organismal level ...

    Abstract Abstract Current genetic modification and phenotyping methods in teleost fish allow detailed investigation of vertebrate mechanisms of development, modeling of specific aspects of human diseases and efficient testing of drugs at an organ/organismal level in an unparalleled fast and large-scale mode. Fish-based experimental approaches have boosted the in vivo verification and implementation of scientific advances, offering the quality guaranteed by animal models that ultimately benefit human health, and are not yet fully replaceable by even the most sophisticated in vitro alternatives. Thanks to highly efficient and constantly advancing genetic engineering as well as non-invasive phenotyping methods, the small zebrafish is quickly becoming a popular alternative to large animals’ experimentation. This approach is commonly associated to invasive procedures and increased burden. Here, we present a rapid and minimally invasive method to obtain sufficient genomic material from single zebrafish embryos by simple and precise tail fin scratching that can be robustly used for at least two rounds of genotyping already from embryos within 48 h of development. The described protocol betters currently available methods (such as fin clipping), by minimizing the relative animal distress associated with biopsy at later or adult stages. It allows early selection of embryos with desired genotypes for strategizing culturing or genotype–phenotype correlation experiments, resulting in a net reduction of “surplus” animals used for mutant line generation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 590
    Language English
    Publishing date 2022-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Pediatric patients with RASopathy-associated hypertrophic cardiomyopathy

    Giulio Calcagni / Maria Cristina Digilio / Bruno Marino / Marco Tartaglia

    Orphanet Journal of Rare Diseases, Vol 14, Iss 1, Pp 1-

    the multifaceted consequences of PTPN11 mutations

    2019  Volume 4

    Abstract: Abstract The concomitant occurrence of hypertrophic cardiomyopathy and congenital heart defect in patients with RASopathies has previously been reported as associated to a worse clinical outcome, particularly closed to cardiac surgery. Different ... ...

    Abstract Abstract The concomitant occurrence of hypertrophic cardiomyopathy and congenital heart defect in patients with RASopathies has previously been reported as associated to a worse clinical outcome, particularly closed to cardiac surgery. Different mechanisms of disease have been demonstrated to be associated with the two classes of PTPN11 mutations underlying Noonan syndrome and Noonan syndrome with multiple lentigines (also known as LEOPARD syndrome). Although differential diagnosis between these two syndromes could be difficult, particularly in the first age of life, we underline the relevance in discriminating these two disorders in terms of affected signaling pathway to allow an effective targeted pharmacological treatment.
    Keywords PI3K-AKT-mTOR ; MAPK ; Hypertrophic cardiomyopathy ; RASopathy ; Medicine ; R
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders

    Mario Cesare Nurchis / Gerardo Altamura / Maria Teresa Riccardi / Francesca Clementina Radio / Giovanni Chillemi / Enrico Silvio Bertini / Jacopo Garlasco / Marco Tartaglia / Bruno Dallapiccola / Gianfranco Damiani

    Archives of Public Health, Vol 81, Iss 1, Pp 1-

    systematic review, meta-analysis, and GRADE assessment

    2023  Volume 12

    Abstract: Abstract Background About 80% of the roughly 7,000 known rare diseases are single gene disorders, about 85% of which are ultra-rare, affecting less than one in one million individuals. NGS technologies, in particular whole genome sequencing (WGS) in ... ...

    Abstract Abstract Background About 80% of the roughly 7,000 known rare diseases are single gene disorders, about 85% of which are ultra-rare, affecting less than one in one million individuals. NGS technologies, in particular whole genome sequencing (WGS) in paediatric patients suffering from severe disorders of likely genetic origin improve the diagnostic yield allowing targeted, effective care and management. The aim of this study is to perform a systematic review and meta-analysis to assess the effectiveness of WGS, with respect to whole exome sequencing (WES) and/or usual care, for the diagnosis of suspected genetic disorders among the paediatric population. Methods A systematic review of the literature was conducted querying relevant electronic databases, including MEDLINE, EMBASE, ISI Web of Science, and Scopus from January 2010 to June 2022. A random-effect meta-analysis was run to inspect the diagnostic yield of different techniques. A network meta-analysis was also performed to directly assess the comparison between WGS and WES. Results Of the 4,927 initially retrieved articles, thirty-nine met the inclusion criteria. Overall results highlighted a significantly higher pooled diagnostic yield for WGS, 38.6% (95% CI: [32.6 – 45.0]), in respect to WES, 37.8% (95% CI: [32.9 – 42.9]) and usual care, 7.8% (95% CI: [4.4 – 13.2]). The meta-regression output suggested a higher diagnostic yield of the WGS compared to WES after controlling for the type of disease (monogenic vs non-monogenic), with a tendency to better diagnostic performances for Mendelian diseases. The network meta-analysis showed a higher diagnostic yield for WGS compared to WES (OR = 1.54, 95%CI: [1.11 – 2.12]). Conclusions Although whole genome sequencing for the paediatric population with suspected genetic disorders provided an accurate and early genetic diagnosis in a high proportion of cases, further research is needed for evaluating costs, effectiveness, and cost-effectiveness of WGS and achieving an informed decision-making process. Trial ...
    Keywords NGS ; Paediatrics ; Diagnostic yield ; Public health ; Health policy ; Public aspects of medicine ; RA1-1270
    Subject code 610
    Language English
    Publishing date 2023-05-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Altered cytoskeletal arrangement in induced pluripotent stem cells and motor neurons from patients with riboflavin transporter deficiency

    Alessia Niceforo / Chiara Marioli / Fiorella Colasuonno / Stefania Petrini / Keith Massey / Marco Tartaglia / Enrico Bertini / Sandra Moreno / Claudia Compagnucci

    Disease Models & Mechanisms, Vol 14, Iss

    2021  Volume 2

    Abstract: The cytoskeletal network plays a crucial role in the differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency ( ... ...

    Abstract The cytoskeletal network plays a crucial role in the differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient-specific induced pluripotent stem cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance. The present study focuses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by an impaired ability to re-polymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca2+ homeostasis, suggesting impaired differentiation. Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.
    Keywords riboflavin transporter deficiency ; ipscs ; motor neurons ; tubulin ; riboflavin ; nac ; Medicine ; R ; Pathology ; RB1-214
    Subject code 616
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher The Company of Biologists
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis

    Rossella Borghi / Valentina Magliocca / Stefania Petrini / Libenzio Adrian Conti / Sandra Moreno / Enrico Bertini / Marco Tartaglia / Claudia Compagnucci

    Journal of Clinical Medicine, Vol 10, Iss 2754, p

    2021  Volume 2754

    Abstract: PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and ... ...

    Abstract PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
    Keywords iPSCs ; neurons ; PCDH19 ; neuronal progenitor cells ; neurogenesis ; disease modeling ; Medicine ; R
    Subject code 616
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Malignant peripheral nerve sheath tumor (MPNST) and MPNST-like entities are defined by a specific DNA methylation profile in pediatric and juvenile population

    Sara Patrizi / Evelina Miele / Lorenza Falcone / Silvia Vallese / Sabrina Rossi / Sabina Barresi / Isabella Giovannoni / Lucia Pedace / Claudia Nardini / Ilaria Masier / Luana Abballe / Antonella Cacchione / Ida Russo / Angela Di Giannatale / Valentina Di Ruscio / Claudia Maria Salgado / Angela Mastronuzzi / Andrea Ciolfi / Marco Tartaglia /
    Giuseppe Maria Milano / Franco Locatelli / Rita Alaggio

    Clinical Epigenetics, Vol 16, Iss 1, Pp 1-

    2024  Volume 12

    Abstract: Abstract Background Malignant peripheral nerve sheath tumors (MPNSTs) account for 3–10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, ... ...

    Abstract Abstract Background Malignant peripheral nerve sheath tumors (MPNSTs) account for 3–10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. Results We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two ...
    Keywords Malignant peripheral nerve sheath tumors ; DNA methylation ; Sarcoma classifier ; H3K27 trimethylation ; Medicine ; R ; Genetics ; QH426-470
    Subject code 570
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top