LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Titers, Prevalence, and Duration of SARS-CoV-2 Antibodies in a Local COVID-19 Outbreak and Following Vaccination

    Jodi F. Hedges / Macy A. Thompson / Deann T. Snyder / Amanda Robison / Matthew P. Taylor / Mark A. Jutila

    Vaccines, Vol 9, Iss 587, p

    2021  Volume 587

    Abstract: Information concerning the development of neutralizing antibodies and their duration will be critical to establishing herd immunity for COVID-19. We sought to evaluate SARS-CoV-2 spike protein receptor-binding domain (RBD)-specific antibodies, their ... ...

    Abstract Information concerning the development of neutralizing antibodies and their duration will be critical to establishing herd immunity for COVID-19. We sought to evaluate SARS-CoV-2 spike protein receptor-binding domain (RBD)-specific antibodies, their duration, and capacity for SARS-CoV-2 neutralization in volunteers while the pandemic spread within our community starting in March 2020. Those participants with the highest starting titers had the longest-lasting response, up to 12 months post-diagnosis. SARS-CoV-2 neutralization capacity was correlated with anti-RBD antibody levels. The majority of our participants with confirmed COVID-19 diagnosis had very mild or asymptomatic infections. We also detected low and largely non-neutralizing anti-RBD IgG titers in a few participants with no known COVID-19 diagnosis. Finally, we found that antibody responses induced by vaccination were significantly higher than those induced by natural infection. Thus, our study suggests that vaccination is still critical even for those naturally infected or diagnosed with COVID-19.
    Keywords anti-RBD IgG ; antibodies ; SARS-CoV-2 ; COVID-19 ; neutralization ; duration ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection

    Marziah Hashimi / T. Andrew Sebrell / Jodi F. Hedges / Deann Snyder / Katrina N. Lyon / Stephanie D. Byrum / Samuel G. Mackintosh / Dan Crowley / Michelle D. Cherne / David Skwarchuk / Amanda Robison / Barkan Sidar / Anja Kunze / Emma K. Loveday / Matthew P. Taylor / Connie B. Chang / James N. Wilking / Seth T. Walk / Tony Schountz /
    Mark A. Jutila / Diane Bimczok

    Nature Communications, Vol 14, Iss 1, Pp 1-

    2023  Volume 15

    Abstract: Abstract Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat ( ... ...

    Abstract Abstract Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
    Keywords Science ; Q
    Subject code 570
    Language English
    Publishing date 2023-10-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic

    Andrew Santiago-Frangos / Laina N. Hall / Anna Nemudraia / Artem Nemudryi / Pushya Krishna / Tanner Wiegand / Royce A. Wilkinson / Deann T. Snyder / Jodi F. Hedges / Calvin Cicha / Helen H. Lee / Ava Graham / Mark A. Jutila / Matthew P. Taylor / Blake Wiedenheft

    Cell Reports Medicine, Vol 2, Iss 6, Pp 100319- (2021)

    2021  

    Abstract: Summary: There is an urgent need for inexpensive new technologies that enable fast, reliable, and scalable detection of viruses. Here, we repurpose the type III CRISPR-Cas system for sensitive and sequence-specific detection of SARS-CoV-2. RNA ... ...

    Abstract Summary: There is an urgent need for inexpensive new technologies that enable fast, reliable, and scalable detection of viruses. Here, we repurpose the type III CRISPR-Cas system for sensitive and sequence-specific detection of SARS-CoV-2. RNA recognition by the type III CRISPR complex triggers Cas10-mediated polymerase activity, which simultaneously generates pyrophosphates, protons, and cyclic oligonucleotides. We show that all three Cas10-polymerase products are detectable using colorimetric or fluorometric readouts. We design ten guide RNAs that target conserved regions of SARS-CoV-2 genomes. Multiplexing improves the sensitivity of amplification-free RNA detection from 107 copies/μL for a single guide RNA to 106 copies/μL for ten guides. To decrease the limit of detection to levels that are clinically relevant, we developed a two-pot reaction consisting of RT-LAMP followed by T7-transcription and type III CRISPR-based detection. The two-pot reaction has a sensitivity of 200 copies/μL and is completed using patient samples in less than 30 min.
    Keywords CRISPR-Cas ; type III ; SARS-CoV-2 ; viral diagnostics ; CRISPR Dx ; COVID-19 ; Medicine (General) ; R5-920
    Subject code 500
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article: Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)

    Schepetkin, Igor A / Andrew G. Ramstead / Jovanka M. Voyich / Liliya N. Kirpotina / Mark A. Jutila / Mark T. Quinn

    Phytotherapy research. 2016 Aug., v. 30, no. 8

    2016  

    Abstract: Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and ... ...

    Abstract Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti‐proliferative, anti‐inflammatory, antibacterial, and anti‐aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.
    Keywords anti-aging properties ; antioxidants ; Epilobium angustifolium ; flavonoids ; medicinal plants ; polyphenols ; therapeutics ; traditional medicine
    Language English
    Dates of publication 2016-08
    Size p. 1287-1297.
    Publishing place John Wiley & Sons, Ltd
    Document type Article
    Note REVIEW
    ZDB-ID 639136-9
    ISSN 1099-1573 ; 0951-418X
    ISSN (online) 1099-1573
    ISSN 0951-418X
    DOI 10.1002/ptr.5648
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  5. Article ; Online: Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes.

    Andrew G Ramstead / Igor A Schepetkin / Mark T Quinn / Mark A Jutila

    PLoS ONE, Vol 7, Iss 11, p e

    2012  Volume 50546

    Abstract: Oenothein B is a polyphenol isolated from Epilobium angustifolium and other plant sources, which has been reported to exhibit immunomodulatory properties. Oenothein B is known to activate myeloid cells and induce the production of IL-1 and other ... ...

    Abstract Oenothein B is a polyphenol isolated from Epilobium angustifolium and other plant sources, which has been reported to exhibit immunomodulatory properties. Oenothein B is known to activate myeloid cells and induce the production of IL-1 and other cytokines. However, its effects on lymphocytes are unknown. In this report, we show that oenothein B stimulated innate lymphocytes, including bovine and human γδ T cells and NK cells, resulting in either increased CD25 and/or CD69 expression. We also demonstrate that oenothein B enhanced the production of interferon-γ (IFNγ) by bovine and human NK cells alone and in combination with interleukin-18 (IL-18), a response not observed with other commonly studied polyphenols. Furthermore, we demonstrate that oenothein B enhanced the production of IFNγ by human T cells. Since IFNγ contributes to antitumor, antibacterial, and antiviral cell responses, these data suggest an additional mechanism that could account, at least in part, for the immune enhancing properties of oenothein B.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Jeff Holderness / Igor A Schepetkin / Brett Freedman / Liliya N Kirpotina / Mark T Quinn / Jodi F Hedges / Mark A Jutila

    PLoS ONE, Vol 6, Iss 2, p e

    2011  Volume 17301

    Abstract: The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized ... ...

    Abstract The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2011-02-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Jerod A Skyberg / Theresa Thornburg / Maryclare Rollins / Eduardo Huarte / Mark A Jutila / David W Pascual

    PLoS ONE, Vol 6, Iss 7, p e

    2011  Volume 21978

    Abstract: γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of ... ...

    Abstract γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/-) mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-), and GMCSF(-/-) mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/-) mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections.

    Jerod A Skyberg / MaryClare F Rollins / Jeff S Holderness / Nicole L Marlenee / Igor A Schepetkin / Andrew Goodyear / Steven W Dow / Mark A Jutila / David W Pascual

    PLoS Pathogens, Vol 8, Iss 3, p e

    2012  Volume 1002587

    Abstract: Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating ... ...

    Abstract Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top