LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 23

Search options

  1. Article ; Online: The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging

    Jordan Marcano Anaya / Wendy B. Bollag / Mark W. Hamrick / Carlos M. Isales

    International Journal of Molecular Sciences, Vol 21, Iss 6670, p

    2020  Volume 6670

    Abstract: Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with ...

    Abstract Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.
    Keywords stem cells ; kynurenine ; tryptophan metabolites ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 571
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia–reperfusion in vivo

    Khairat Bahgat Youssef El Baradie / Mohammad B. Khan / Bharati Mendhe / Jennifer Waller / Frederick O’Brien / Mark W. Hamrick

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Abstract Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. ...

    Abstract Abstract Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury

    Khairat Bahgat Youssef El Baradie / Mohamed Nouh / Frederick O’Brien III / Yutao Liu / Sadanand Fulzele / Ali Eroglu / Mark W. Hamrick

    Frontiers in Cell and Developmental Biology, Vol

    2020  Volume 8

    Abstract: Cellular therapies have tremendous potential for the successful treatment of major extremity wounds in the combat setting, however, the challenges associated with transplanting stem cells in the prolonged field care (PFC) environment are a critical ... ...

    Abstract Cellular therapies have tremendous potential for the successful treatment of major extremity wounds in the combat setting, however, the challenges associated with transplanting stem cells in the prolonged field care (PFC) environment are a critical barrier to progress in treating such injuries. These challenges include not only production and storage but also transport and handling issues. Our goal is to develop a new strategy utilizing extracellular vesicles (EVs) secreted by stem cells that can resolve many of these issues and prevent ischemic tissue injury. While EVs can be preserved by freezing or lyophilization, both processes result in decrease in their bioactivity. Here, we describe optimized procedures for EVs production, isolation, and lyophilization from primary human adipose-derived stem cells (hADSCs). We compared two isolation approaches that were ultrafiltration (UF) using a tangential fluid filtration (TFF) system and differential ultracentrifugation (UC). We also optimized EVs lyophilization in conjunction with trehalose and polyvinylpyrrolidone 40 (PVP40) as lyoprotectants. Bioactivity of EVs was assessed based on reversal of hypoxia-induced muscle cell injury. To this end, primary human myoblasts were subjected to hypoxic conditions for 6 h, and then treated with hADSC-derived EVs at a concentration of 50 μg/mL. Subsequently, muscle cell viability and toxicity were evaluated using MTS and LDH assays, respectively. Overall, nanoparticle tracking data indicated that UF/TFF yields threefold more particles than UC. Lyophilization of EVs resulted in a significantly reduced number of particles, which could be attenuated by adding lyoprotections to the freeze-drying solution. Furthermore, EVs isolated by UF/TFF and freeze-dried in the presence of trehalose significantly increased viability (P < 0.0193). Taken together, our findings suggest that the isolation and preservation methods presented in this study may enhance therapeutic applications of EVs.
    Keywords exosome ; ultrafiltration ; ultracentrifugation ; hypoxia ; trehalose ; PVP ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Recent advances in hyaluronic acid based therapy for osteoarthritis

    Steven Bowman / Mohamed E. Awad / Mark W. Hamrick / Monte Hunter / Sadanand Fulzele

    Clinical and Translational Medicine, Vol 7, Iss 1, Pp 1-

    2018  Volume 11

    Abstract: Abstract Osteoarthritis is a debilitating disease that has increased in prevalence across the world due to the aging population. Currently, physicians use a plethora of treatment strategies to try and slow down the progression of the disease, but none ... ...

    Abstract Abstract Osteoarthritis is a debilitating disease that has increased in prevalence across the world due to the aging population. Currently, physicians use a plethora of treatment strategies to try and slow down the progression of the disease, but none have been shown to ubiquitously treat and cure the disease. One of the strategies uses the high molecular weight molecule hyaluronic acid as either an injectable or oral supplement for treatment. Hyaluronic acid (HA) is a relatively new treatment that has shown varied results through several clinical trials. It can be used as a scaffold for engineering new treatments and several new preparations have just been added to the market. A comprehensive search was conducted through several search databases according our inclusion and exclusion criteria. This review included 44 prospective clinical trial investigating the feasibility and efficacy of HA injection for knee, hip, and ankle osteoarthritis. This review will take a closer look at hyaluronic acid and its properties, as well clinical effectiveness and future options.
    Keywords Osteoarthritis ; Hyaluronic acid (HA) ; Treatment ; Tissue engineering ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2018-02-01T00:00:00Z
    Publisher Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Noncoding RNAs and Stem Cell Function and Therapy

    Yaoliang Tang / Wei Lei / Yanfang Chen / Xiaolong Wang / Mark W. Hamrick / Mi Zhou

    Stem Cells International, Vol

    2018  Volume 2018

    Keywords Internal medicine ; RC31-1245
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs)

    Walter M. Hodges / Frederick O’Brien / Sadanand Fulzele / Mark W. Hamrick

    International Journal of Molecular Sciences, Vol 18, Iss 12, p

    2017  Volume 2597

    Abstract: Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative ... ...

    Abstract Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs) particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2) mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor β-1 (TGFβ-1). In addition, transforming growth factor β-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFβ-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFβ-1 expression.
    Keywords TGFβ1 ; miR-17 ; miR-23a ; miR-31 ; bone repair ; BMP2 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 500
    Language English
    Publishing date 2017-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice

    Ibrahim Yusufu / Kehong Ding / Kathryn Smith / Umesh D. Wankhade / Bikash Sahay / G. Taylor Patterson / Rafal Pacholczyk / Satish Adusumilli / Mark W. Hamrick / William D. Hill / Carlos M. Isales / Sadanand Fulzele

    International Journal of Molecular Sciences, Vol 22, Iss 5005, p

    2021  Volume 5005

    Abstract: The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, ...

    Abstract The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.
    Keywords tryptophan ; systemic inflammation ; dysbiosis ; gut ; microbiota ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 590
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells

    Andrew Khayrullin / Priyanka Krishnan / Luis Martinez-Nater / Bharati Mendhe / Sadanand Fulzele / Yutao Liu / Julie A. Mattison / Mark W. Hamrick

    Cells, Vol 8, Iss 1, p

    2019  Volume 37

    Abstract: Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a ... ...

    Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24–40 yrs.) and older (75–90 yrs.) women and young (6–10 yrs.) and older (25–30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging.
    Keywords aging ; neutral sphingomyelinase 2 ; cell-cell communication ; extracellular vesicles ; Biology (General) ; QH301-705.5
    Subject code 571 ; 550
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice

    Anuj K. Sharma / Rachel L. Roberts / Reginald D. Benson / Jessica L. Pierce / Kanglun Yu / Mark W. Hamrick / Meghan E. McGee-Lawrence

    Frontiers in Cell and Developmental Biology, Vol

    2020  Volume 8

    Abstract: Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of ... ...

    Abstract Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its in vivo effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (−60.1% females, −45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (−88% females, −83% males). Moreover, in vitro administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated in vivo. Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax’s potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.
    Keywords osteoblast ; bone marrow stromal cell ; skeleton ; senescence ; senolytic ; osteoporosis ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Sex-Specific Differences in Extracellular Vesicle Protein Cargo in Synovial Fluid of Patients with Osteoarthritis

    Ravindra Kolhe / Virgenal Owens / Ashok Sharma / Tae Jin Lee / Wenbo Zhi / Umar Ghilzai / Ashis K. Mondal / Yutao Liu / Carlos M. Isales / Mark W. Hamrick / Monte Hunter / Sadanand Fulzele

    Life, Vol 10, Iss 337, p

    2020  Volume 337

    Abstract: Women are at a significantly higher risk of developing osteoarthritis (OA) compared to males. The pathogenesis of osteoarthritis (OA) in women is poorly understood. Extracellular vesicles (EVs) have been shown to play an essential role in numerous ... ...

    Abstract Women are at a significantly higher risk of developing osteoarthritis (OA) compared to males. The pathogenesis of osteoarthritis (OA) in women is poorly understood. Extracellular vesicles (EVs) have been shown to play an essential role in numerous signaling processes during the pathogenesis of age-related diseases via paracrine signaling. Molecular profiling of the synovial fluid-derived EVs cargo in women may help in the discovery of novel biomarkers and therapeutics for the treatment of OA in women. Previously, we reported that synovial fluid-derived EV miRNA cargo differs in a sex-specific manner. This study aims to characterize synovial fluid-derived EV protein cargo in OA patients. Our data showed sex-specific EVs protein content in OA. We found haptoglobin, orosomucoid, and ceruloplasmin significantly up-regulated, whereas apolipoprotein down-regulated in female OA EVs. In males, we discovered β-2-glycoprotein, and complement component 5 proteins significantly up-regulated and Spt-Ada-Gcn5 acetyltransferase (SAGA)-associated factor 29 down-regulated in male OA EVs. Database for Annotation, Visualization, and Integrated Discovery (DAVID) and QuickGO analysis revealed OA-specific protein involvement in several biological, molecular, and cellular pathways, specifically in inflammatory processes. In conclusion, synovial fluid EV protein content is altered in a sex-specific manner with OA, explaining the increased prevalence and severity of OA in women.
    Keywords gender ; cartilage degeneration ; exosomes ; mass spectrometry ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top