LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Cancer Stem Cells as Mediators of Treatment Resistance in Brain Tumors

    Per Ø. Sakariassen / Heike Immervoll / Martha Chekenya

    Neoplasia : An International Journal for Oncology Research, Vol 9, Iss 11, Pp 882-

    Status and Controversies

    2007  Volume 892

    Abstract: Malignant primary brain tumors are characterized by a short median survival and an almost 100% tumorrelated mortality. Despite the addition of new chemotherapy regimes, the overall survival has improved marginally, and radiotherapy is only transiently ... ...

    Abstract Malignant primary brain tumors are characterized by a short median survival and an almost 100% tumorrelated mortality. Despite the addition of new chemotherapy regimes, the overall survival has improved marginally, and radiotherapy is only transiently effective, illustrating the profound impact of treatment resistance on prognosis. Recent studies suggest that a small subpopulation of cancer stem cells (CSCs) has the capacity to repopulate tumors and drive malignant progression and mediate radio- and chemoresistance. This implies that future therapies should turn from the elimination of the rapidly dividing, but differentiated tumor cells, to specifically targeting the minority of tumor cells that repopulate the tumor. Although there exists some support for the CSC hypothesis, there remain many uncertainties regarding theoretical, technical, and interpretational aspects of the data supporting it. If correct, the CSC hypothesis could have profound implications for the way tumors are classified and treated. In this review of the literature, we provide original data and hypotheses supporting alternative explanations and outline some of the therapeutic implications that can be derived.
    Keywords Neural stem cell ; CD133 ; glioblastoma ; chemoresistance ; radioresistance ; Medicine ; R ; Internal medicine ; RC31-1245 ; Neoplasms. Tumors. Oncology. Including cancer and carcinogens ; RC254-282
    Publishing date 2007-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Cecilie Brekke Rygh / Jian Wang / Marte Thuen / Andrea Gras Navarro / Else Marie Huuse / Frits Thorsen / Aurelie Poli / Jacques Zimmer / Olav Haraldseth / Stein Atle Lie / Per Øyvind Enger / Martha Chekenya

    PLoS ONE, Vol 9, Iss 9, p e

    2014  Volume 108414

    Abstract: There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect ... ...

    Abstract There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In conclusion, ve was the most reliable radiological parameter for detecting response to intralesional NK cellular therapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Gamma Knife Surgery as Monotherapy with Clinically Relevant Doses Prolongs Survival in a Human GBM Xenograft Model

    Bente Sandvei Skeie / Jian Wang / Ernest Dodoo / Jan Ingeman Heggdal / Janne Grønli / Linda Sleire / Sidsel Bragstad / Jeremy C. Ganz / Martha Chekenya / Sverre Mørk / Paal-Henning Pedersen / Per Øyvind Enger

    BioMed Research International, Vol

    2013  Volume 2013

    Abstract: Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we ... ...

    Abstract Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12 Gy or 18 Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls (P<0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls (P<0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment (P=0.04). Conclusion. GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild.
    Keywords Medicine ; R
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma.

    Jian Wang / Agnete Svendsen / Justyna Kmiecik / Heike Immervoll / Kai Ove Skaftnesmo / Jesús Planagumà / Rolf Kåre Reed / Rolf Bjerkvig / Hrvoje Miletic / Per Øyvind Enger / Cecilie Brekke Rygh / Martha Chekenya

    PLoS ONE, Vol 6, Iss 7, p e

    2011  Volume 23062

    Abstract: Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and ...

    Abstract Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model.

    Ingrid Moen / Anne Margrete Øyan / Karl-Henning Kalland / Karl Johan Tronstad / Lars Andreas Akslen / Martha Chekenya / Per Øystein Sakariassen / Rolf Kåre Reed / Linda Elin Birkhaug Stuhr

    PLoS ONE, Vol 4, Iss 7, p e

    2009  Volume 6381

    Abstract: Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary ... ...

    Abstract Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2) = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO(2) = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2009-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top