LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 11

Search options

  1. Article ; Online: LepRb+ cell–specific deletion of Slug mitigates obesity and nonalcoholic fatty liver disease in mice

    Min-Hyun Kim / Yuan Li / Qiantao Zheng / Lin Jiang / Martin G. Myers Jr. / Wen-Shu Wu / Liangyou Rui

    The Journal of Clinical Investigation, Vol 133, Iss

    2023  Volume 4

    Abstract: Leptin exerts its biological actions by activating the long-form leptin receptor (LepRb). LepRb signaling impairment and leptin resistance are believed to cause obesity. The transcription factor Slug — also known as Snai2 — recruits epigenetic modifiers ... ...

    Abstract Leptin exerts its biological actions by activating the long-form leptin receptor (LepRb). LepRb signaling impairment and leptin resistance are believed to cause obesity. The transcription factor Slug — also known as Snai2 — recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance. Here, we uncover a proobesity function of neuronal Slug. Hypothalamic Slug was upregulated in obese mice. LepRb+ cell–specific Slug-knockout (SlugΔLepRb) mice were resistant to diet-induced obesity, type 2 diabetes, and liver steatosis and experienced decreased food intake and increased fat thermogenesis. Leptin stimulated hypothalamic Stat3 phosphorylation and weight loss to a markedly higher level in SlugΔLepRb than in Slugfl/fl mice, even before their body weight divergence. Conversely, hypothalamic LepRb+ neuron–specific overexpression of Slug, mediated by AAV-hSyn-DIO-Slug transduction, induced leptin resistance, obesity, and metabolic disorders in mice on a chow diet. At the genomic level, Slug bound to and repressed the LepRb promoter, thereby inhibiting LepRb transcription. Consistently, Slug deficiency decreased methylation of LepRb promoter H3K27, a repressive epigenetic mark, and increased LepRb mRNA levels in the hypothalamus. Collectively, these results unravel what we believe to be a previously unrecognized hypothalamic neuronal Slug/epigenetic reprogramming/leptin resistance axis that promotes energy imbalance, obesity, and metabolic disease.
    Keywords Cell biology ; Metabolism ; Medicine ; R
    Subject code 630
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models

    Alan C. Rupp / Abigail J. Tomlinson / Alison H. Affinati / Warren T. Yacawych / Allison M. Duensing / Cadence True / Sarah R. Lindsley / Melissa A. Kirigiti / Alexander MacKenzie / Joseph Polex-Wolf / Chien Li / Lotte Bjerre Knudsen / Randy J. Seeley / David P. Olson / Paul Kievit / Martin G. Myers Jr.

    The Journal of Clinical Investigation, Vol 133, Iss

    2023  Volume 19

    Abstract: The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by ... ...

    Abstract The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
    Keywords Endocrinology ; Metabolism ; Medicine ; R
    Language English
    Publishing date 2023-10-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification

    Xingfa Han / Laura L. Burger / David Garcia-Galiano / Suzanne M. Moenter / Martin G. Myers, Jr, / David P. Olson / Carol F. Elias

    STAR Protocols, Vol 2, Iss 2, Pp 100589- (2021)

    2021  

    Abstract: Summary: Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can ...

    Abstract Summary: Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can be used for sequencing or transcript quantification. This protocol enables the identification of actively translated mRNAs in varying physiological states and can be modified for use in any neuronal subpopulation labeled with a ribo-tag. We use leptin receptor-expressing neurons as an example to illustrate the protocol.For complete details on the use and execution of this protocol, please refer to Han et al. (2020).
    Keywords Gene Expression ; Neuroscience ; Protein Biochemistry ; Science (General) ; Q1-390
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice

    Henriette Frikke-Schmidt / Karin Hultman / Joseph W. Galaske / Sebastian B. Jørgensen / Martin G. Myers, Jr. / Randy J. Seeley

    Molecular Metabolism, Vol 21, Iss , Pp 13-

    2019  Volume 21

    Abstract: Objective: Analogues of GDF15 (Growth Differentiation Factor 15) are promising new anti-obesity therapies as pharmacological treatment with GDF15 results in dramatic reductions of food intake and body weight. GDF15 exerts its central anorexic effects by ... ...

    Abstract Objective: Analogues of GDF15 (Growth Differentiation Factor 15) are promising new anti-obesity therapies as pharmacological treatment with GDF15 results in dramatic reductions of food intake and body weight. GDF15 exerts its central anorexic effects by binding to the GFRAL receptor exclusively expressed in the Area Postrema (AP) and the Nucleus of the Solitary Tract (NTS) of the hindbrain. We sought to determine if GDF15 is an indispensable factor for other interventions that cause weight loss and which are also known to act via these hindbrain regions. Methods: To explore the role of GDF15 on food choice we performed macronutrient intake studies in mice treated pharmacologically with GDF15 and in mice having either GDF15 or GFRAL deleted. Next we performed vertical sleeve gastrectomy (VSG) surgeries in a cohort of diet-induced obese Gdf15-null and control mice. To explore the anatomical co-localization of neurons in the hindbrain responding to GLP-1 and/or GDF15 we used GLP-1R reporter mice treated with GDF15, as well as naïve mouse brain and human brain stained by ISH and IHC, respectively, for GLP-1R and GFRAL. Lastly we performed a series of food intake experiments where we treated mice with targeted genetic disruption of either Gdf15 or Gfral with liraglutide; Glp1r-null mice with GDF15; or combined liraglutide and GDF15 treatment in wild-type mice. Results: We found that GDF15 treatment significantly lowered the preference for fat intake in mice, whereas no changes in fat intake were observed after genetic deletion of Gdf15 or Gfral. In addition, deletion of Gdf15 did not alter the food intake or bodyweight after sleeve gastrectomy. Lack of GDF15 or GFRAL signaling did not alter the ability of the GLP-1R agonist liraglutide to reduce food intake. Similarly lack of GLP-1R signaling did not reduce GDF15's anorexic effect. Interestingly, there was a significant synergistic effect on weight loss when treating wild-type mice with both GDF15 and liraglutide. Conclusion: These data suggest that while GDF15 does ...
    Keywords Internal medicine ; RC31-1245
    Subject code 616
    Language English
    Publishing date 2019-03-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Hypothalamic and Cell-Specific Transcriptomes Unravel a Dynamic Neuropil Remodeling in Leptin-Induced and Typical Pubertal Transition in Female Mice

    Xingfa Han / Laura L. Burger / David Garcia-Galiano / Seokmin Sim / Susan J. Allen / David P. Olson / Martin G. Myers, Jr. / Carol F. Elias

    iScience, Vol 23, Iss 10, Pp 101563- (2020)

    2020  

    Abstract: Summary: Epidemiological and genome-wide association studies (GWAS) have shown high correlation between childhood obesity and advance in puberty. Early age at menarche is associated with a series of morbidities, including breast cancer, cardiovascular ... ...

    Abstract Summary: Epidemiological and genome-wide association studies (GWAS) have shown high correlation between childhood obesity and advance in puberty. Early age at menarche is associated with a series of morbidities, including breast cancer, cardiovascular diseases, type 2 diabetes, and obesity. The adipocyte hormone leptin signals the amount of fat stores to the neuroendocrine reproductive axis via direct actions in the brain. Using mouse genetics, we and others have identified the hypothalamic ventral premammillary nucleus (PMv) and the agouti-related protein (AgRP) neurons in the arcuate nucleus (Arc) as primary targets of leptin action in pubertal maturation. However, the molecular mechanisms underlying leptin's effects remain unknown. Here we assessed changes in the PMv and Arc transcriptional program during leptin-stimulated and typical pubertal development using overlapping analysis of bulk RNA sequecing, TRAP sequencing, and the published database. Our findings demonstrate that dynamic somatodendritic remodeling and extracellular space organization underlie leptin-induced and typical pubertal maturation in female mice.
    Keywords Neuroscience ; Computational Bioinformatics ; Transcriptomics ; Science ; Q
    Subject code 630 ; 616
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Identification of the leptin receptor sequences crucial for the STAT3-Independent control of metabolism

    Tammy M. Barnes / Kimi Shah / Margaret B. Allison / Gabrielle K. Steinl / Desiree Gordian / Paul V. Sabatini / Abigail J. Tomlinson / Wenwen Cheng / Justin C. Jones / Qing Zhu / Chelsea Faber / Martin G. Myers, Jr.

    Molecular Metabolism, Vol 32, Iss , Pp 168-

    2020  Volume 175

    Abstract: Background: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet- ... ...

    Abstract Background: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. Methods: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. Results: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013–1053 and 960–1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. Conclusions: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961–1013) containing Tyr985, we also identified the region containing residues 1013–1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals. Keywords: Leptin receptor, STAT3, Truncation mutant, Obesity, Diabetes
    Keywords Internal medicine ; RC31-1245
    Subject code 570
    Language English
    Publishing date 2020-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Transcriptional and physiological roles for STAT proteins in leptin action

    Warren Pan / Margaret B. Allison / Paul Sabatini / Alan Rupp / Jessica Adams / Christa Patterson / Justin C. Jones / David P. Olson / Martin G. Myers, Jr.

    Molecular Metabolism, Vol 22, Iss , Pp 121-

    2019  Volume 131

    Abstract: Objectives: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) ...

    Abstract Objectives: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. Methods: Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3LepRbKO mice), revealing the STAT3-dependent transcriptional targets of leptin. To understand roles for STAT proteins in leptin action, we also ablated STAT1 or STAT5 from LepRb neurons and expressed a constitutively-active STAT3 (CASTAT3) in LepRb neurons. Results: While we also found increased Stat1 expression and STAT1-mediated transcription of leptin-regulated genes in Stat3LepRbKO mice, ablating Stat1 in LepRb neurons failed to alter energy balance (even on the Stat3LepRbKO background); ablating Stat5 in LepRb neurons also failed to alter energy balance. Importantly, expression of a constitutively-active STAT3 (CASTAT3) in LepRb neurons decreased food intake and body weight and improved metabolic parameters in leptin-deficient (ob/ob) mice, as well as in wild-type animals. Conclusions: Thus, STAT3 represents the unique STAT protein required for leptin action and STAT3 suffices to mediate important components of leptin action in the absence of other LepRb signals. Keywords: Leptin receptor, STAT1, STAT3, STAT5, Transcription, Obesity, Diabetes
    Keywords Internal medicine ; RC31-1245
    Language English
    Publishing date 2019-04-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance

    Alan C. Rupp / Margaret B. Allison / Justin C. Jones / Christa M. Patterson / Chelsea L. Faber / Nadejda Bozadjieva / Lora K. Heisler / Randy J. Seeley / David P. Olson / Martin G. Myers, Jr.

    Molecular Metabolism, Vol 14, Iss , Pp 130-

    2018  Volume 138

    Abstract: Objective: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In ... ...

    Abstract Objective: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. Methods: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. Results: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. Conclusions: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH. Keywords: leptin receptor, arcuate nucleus, DMH, obesity, cre recombinase, ghrh, htr2c
    Keywords Internal medicine ; RC31-1245
    Subject code 590
    Language English
    Publishing date 2018-08-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons

    Margaret B. Allison / Christa M. Patterson / Michael J. Krashes / Bradford B. Lowell / Martin G. Myers, Jr. / David P. Olson

    Molecular Metabolism, Vol 4, Iss 4, Pp 299-

    2015  Volume 309

    Abstract: Objective: Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular ... ...

    Abstract Objective: Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular identity of many LepRb subpopulations remain undefined due to the difficulty of studying the small fraction of total cells represented by LepRb neurons in heterogeneous brain regions. Here we sought to examine the transcriptome of LepRb neurons directly and identify markers for functionally relevant LepRb subsets. Methods: We isolated mRNA from mouse hypothalamic and brainstem LepRb cells by Translating Ribosome Affinity Purification (TRAP) and analyzed it by RNA-seq (TRAP-seq). Results: TRAP mRNA from LepRb cells was enriched for markers of peptidergic neurons, while TRAP-depleted mRNA from non-LepRb cells was enriched for markers of glial and immune cells. Genes encoding secreted proteins that were enriched in hypothalamic and brainstem TRAP mRNA revealed subpopulations of LepRb neurons that contained neuropeptide-encoding genes (including prodynorphin, Pdyn) not previously used as functional markers for LepRb neurons. Furthermore, Pdyncre-mediated ablation of Leprflox in Pdyn-expressing neurons (LepRbPdynKO mice) blunted energy expenditure to promote obesity during high-fat feeding. Conclusions: TRAP-seq of CNS LepRb neurons defines the LepRb neuron transcriptome and reveals novel markers for previously unrecognized subpopulations of LepRb neurons.
    Keywords Leptin ; Hypothalamus ; Brainstem ; Neuropeptides ; Dynorphin ; Internal medicine ; RC31-1245
    Subject code 590
    Language English
    Publishing date 2015-04-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons

    Gillian Cady / Taylor Landeryou / Michael Garratt / John J. Kopchick / Nathan Qi / David Garcia-Galiano / Carol F. Elias / Martin G. Myers, Jr. / Richard A. Miller / Darleen A. Sandoval / Marianna Sadagurski

    Molecular Metabolism, Vol 6, Iss 5, Pp 393-

    2017  Volume 405

    Abstract: Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance ...

    Abstract Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR). The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver
    Keywords Internal medicine ; RC31-1245
    Subject code 590
    Language English
    Publishing date 2017-05-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top