LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Spatially visualized single-cell pathology of highly multiplexed protein profiles in health and disease

    Mayar Allam / Thomas Hu / Shuangyi Cai / Krishnan Laxminarayanan / Robert B. Hughley / Ahmet F. Coskun

    Communications Biology, Vol 4, Iss 1, Pp 1-

    2021  Volume 16

    Abstract: Allam, Hu, et al. present SpatialViz, a suite of algorithms to explore spatial relationships in multiplexed tissue images by visualizing and quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue imaging data. The ... ...

    Abstract Allam, Hu, et al. present SpatialViz, a suite of algorithms to explore spatial relationships in multiplexed tissue images by visualizing and quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue imaging data. The authors employ SpatialViz on 20-plex protein data in tissue sections from normal and chronic tonsillitis cases and observe GrB and CD86 coexpression and CD3 + CD4+ enrichment in diseased tonsils compared to healthy tonsils, and demonstrate the utility of SpatialViz as a wide-application spatial visualization method.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Multiplexed protein profiling reveals spatial subcellular signaling networks

    Shuangyi Cai / Thomas Hu / Mythreye Venkatesan / Mayar Allam / Frank Schneider / Suresh S. Ramalingam / Shi-Yong Sun / Ahmet F. Coskun

    iScience, Vol 25, Iss 9, Pp 104980- (2022)

    2022  

    Abstract: Summary: Protein-protein interaction networks are altered in multi-gene dysregulations in many disorders. Image-based protein multiplexing sheds light on signaling pathways to dissect cell-to-cell heterogeneity, previously masked by the bulk assays. ... ...

    Abstract Summary: Protein-protein interaction networks are altered in multi-gene dysregulations in many disorders. Image-based protein multiplexing sheds light on signaling pathways to dissect cell-to-cell heterogeneity, previously masked by the bulk assays. Herein, we present a rapid multiplexed immunofluorescence (RapMIF) method measuring up to 25-plex spatial protein maps from cultures and tissues at subcellular resolution, providing combinatorial 272 pairwise and 1,360 tri-protein signaling states across 33 multiplexed pixel-level clusters. The RapMIF pipeline automated staining, bleaching, and imaging of the biospecimens in a single platform. RapMIF showed that WNT/β-catenin signaling upregulated upon the inhibition of the AKT/mTOR pathway. Subcellular protein images demonstrated translocation patterns, spatial receptor discontinuity, and subcellular signaling clusters in single cells. Signaling networks exhibited spatial redistribution of signaling proteins in drug-responsive cultures. Machine learning analysis predicted the phosphorylated β-catenin expression from interconnected signaling protein images. RapMIF is an ideal signaling discovery approach for precision therapy design.
    Keywords Biological sciences ; Biotechnology ; Biological sciences research methodologies ; Biology experimental methods ; Science ; Q
    Language English
    Publishing date 2022-09-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology

    Thomas Hu / Mayar Allam / Shuangyi Cai / Walter Henderson / Brian Yueh / Aybuke Garipcan / Anton V. Ievlev / Maryam Afkarian / Semir Beyaz / Ahmet F. Coskun

    Nature Communications, Vol 14, Iss 1, Pp 1-

    2023  Volume 20

    Abstract: Abstract Metabolic reprogramming in cancer and immune cells occurs to support their increasing energy needs in biological tissues. Here we propose Single Cell Spatially resolved Metabolic (scSpaMet) framework for joint protein-metabolite profiling of ... ...

    Abstract Abstract Metabolic reprogramming in cancer and immune cells occurs to support their increasing energy needs in biological tissues. Here we propose Single Cell Spatially resolved Metabolic (scSpaMet) framework for joint protein-metabolite profiling of single immune and cancer cells in male human tissues by incorporating untargeted spatial metabolomics and targeted multiplexed protein imaging in a single pipeline. We utilized the scSpaMet to profile cell types and spatial metabolomic maps of 19507, 31156, and 8215 single cells in human lung cancer, tonsil, and endometrium tissues, respectively. The scSpaMet analysis revealed cell type-dependent metabolite profiles and local metabolite competition of neighboring single cells in human tissues. Deep learning-based joint embedding revealed unique metabolite states within cell types. Trajectory inference showed metabolic patterns along cell differentiation paths. Here we show scSpaMet’s ability to quantify and visualize the cell-type specific and spatially resolved metabolic-protein mapping as an emerging tool for systems-level understanding of tissue biology.
    Keywords Science ; Q
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: COVID-19 Diagnostics, Tools, and Prevention

    Mayar Allam / Shuangyi Cai / Shambavi Ganesh / Mythreye Venkatesan / Saurabh Doodhwala / Zexing Song / Thomas Hu / Aditi Kumar / Jeremy Heit / COVID-19 Study Group / Ahmet F. Coskun

    Diagnostics, Vol 10, Iss 409, p

    2020  Volume 409

    Abstract: The Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), outbreak from Wuhan City, Hubei province, China in 2019 has become an ongoing global health emergency. The emerging virus, SARS-CoV-2, ... ...

    Abstract The Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), outbreak from Wuhan City, Hubei province, China in 2019 has become an ongoing global health emergency. The emerging virus, SARS-CoV-2, causes coughing, fever, muscle ache, and shortness of breath or dyspnea in symptomatic patients. The pathogenic particles that are generated by coughing and sneezing remain suspended in the air or attach to a surface to facilitate transmission in an aerosol form. This review focuses on the recent trends in pandemic biology, diagnostics methods, prevention tools, and policies for COVID-19 management. To meet the growing demand for medical supplies during the COVID-19 era, a variety of personal protective equipment (PPE) and ventilators have been developed using do-it-yourself (DIY) manufacturing. COVID-19 diagnosis and the prediction of virus transmission are analyzed by machine learning algorithms, simulations, and digital monitoring. Until the discovery of a clinically approved vaccine for COVID-19, pandemics remain a public concern. Therefore, technological developments, biomedical research, and policy development are needed to decipher the coronavirus mechanism and epidemiological characteristics, prevent transmission, and develop therapeutic drugs.
    Keywords COVID-19 ; SARS-CoV-2 ; rapid testing ; immunity ; vaccines ; 3D printing ; Medicine (General) ; R5-920 ; covid19
    Language English
    Publishing date 2020-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top