LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 46

Search options

  1. Article ; Online: Quality Classification of Injection-Molded Components by Using Quality Indices, Grading, and Machine Learning

    Kun-Cheng Ke / Ming-Shyan Huang

    Polymers, Vol 13, Iss 3, p

    2021  Volume 353

    Abstract: Conventional methods for assessing the quality of components mass produced using injection molding are expensive and time-consuming or involve imprecise statistical process control parameters. A suitable alternative would be to employ machine learning to ...

    Abstract Conventional methods for assessing the quality of components mass produced using injection molding are expensive and time-consuming or involve imprecise statistical process control parameters. A suitable alternative would be to employ machine learning to classify the quality of parts by using quality indices and quality grading. In this study, we used a multilayer perceptron (MLP) neural network along with a few quality indices to accurately predict the quality of “qualified” and “unqualified” geometric shapes of a finished product. These quality indices, which exhibited a strong correlation with part quality, were extracted from pressure curves and input into the MLP model for learning and prediction. By filtering outliers from the input data and converting the measured quality into quality grades used as output data, we increased the prediction accuracy of the MLP model and classified the quality of finished parts into various quality levels. The MLP model may misjudge datapoints in the “to-be-confirmed” area, which is located between the “qualified” and “unqualified” areas. We classified the “to-be-confirmed” area, and only the quality of products in this area were evaluated further, which reduced the cost of quality control considerably. An integrated circuit tray was manufactured to experimentally demonstrate the feasibility of the proposed method.
    Keywords injection molding ; cavity pressure curve ; machine learning ; multilayer perceptron neural network ; quality indices ; quality control ; Organic chemistry ; QD241-441
    Subject code 670
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network

    Kun-Cheng Ke / Ming-Shyan Huang

    Polymers, Vol 12, Iss 1812, p

    2020  Volume 1812

    Abstract: Injection molding has been widely used in the mass production of high-precision products. The finished products obtained through injection molding must have a high quality. Machine parameters do not accurately reflect the molding conditions of the ... ...

    Abstract Injection molding has been widely used in the mass production of high-precision products. The finished products obtained through injection molding must have a high quality. Machine parameters do not accurately reflect the molding conditions of the polymer melt; thus, the use of machine parameters leads to erroneous quality judgments. Moreover, the cost of mass inspections of finished products has led to strict restrictions on comprehensive quality testing. Therefore, an automatic quality inspection that provides effective and accurate quality judgment for each injection-molded part is required. This study proposes a multilayer perceptron (MLP) neural network model combined with quality indices for performing fast and automatic prediction of the geometry of finished products. The pressure curves detected by the in-mold pressure sensor, which reflect the flow state of the melt, changes in various indicators and molding quality, were considered in this study. Furthermore, the quality indices extracted from pressure curves with a strong correlation with the part quality were input into the MLP model for learning and prediction. The results indicate that the training and testing of the first-stage holding pressure index, pressure integral index, residual pressure drop index and peak pressure index with respect to the geometric widths were accurate (accuracy rate exceeded 92%), which demonstrates the feasibility of the proposed method.
    Keywords cavity pressure ; injection molding ; intelligent manufacturing ; multilayer perceptron model ; quality prediction ; Organic chemistry ; QD241-441
    Subject code 670
    Language English
    Publishing date 2020-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Impact of Gut Dysbiosis on the Risk of Non-Small-Cell Lung Cancer

    Yu-Feng Wei / Ming-Shyan Huang / Cheng-Hsieh Huang / Yao-Tsung Yeh / Chih-Hsin Hung

    International Journal of Environmental Research and Public Health, Vol 19, Iss 15991, p

    2022  Volume 15991

    Abstract: Background: The imbalance of gut microbiota, dysbiosis, is associated with various malignant diseases. This study aimed to identify the characteristics of gut microbiota in age-matched treatment-naïve non-small-cell lung cancer (NSCLC) patients and ... ...

    Abstract Background: The imbalance of gut microbiota, dysbiosis, is associated with various malignant diseases. This study aimed to identify the characteristics of gut microbiota in age-matched treatment-naïve non-small-cell lung cancer (NSCLC) patients and healthy individuals to investigate possible gut-microbe-related pathways involved in the development of NSCLC. Methods: We enrolled 34 age-matched NSCLC patients and 268 healthy individuals. Hypervariable V3–V4 amplicons of 16S rRNA in freshly collected fecal samples were sequenced. Diversity, microbial composition, functional pathways, smoking history, and gut-microbe-related comorbidities were analyzed to assess the factors associated with the risk of NSCLC. Results: Microbial alpha diversity was decreased in the patients with NSCLC, and beta diversity was significantly different between the patients and controls ( p < 0.001). After adjustments for sex, smoking history, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, and 11 abundant microbes with significant differences between the patients and controls, the enrichment of Anaerotruncus spp. and Bacteroides caccae was associated with an increased risk of NSCLC ( p = 0.003 and 0.007, respectively). The areas under receiver operating characteristic curves were 71.4% and 66.9% for Anaerotruncus spp. and Bacteroides caccae , respectively (both p < 0.001). Furthermore, the abundance of Bacteroides caccae was positively correlated with steroid hormone biosynthesis ( p < 0.001), N-glycan biosynthesis ( p = 0.023), glycosaminoglycan degradation ( p < 0.001), lipoic acid metabolism ( p = 0.039), peroxisome ( p < 0.001), and apoptosis ( p < 0.001), but inversely related to glycerolipid metabolism ( p < 0.001). Anaerotruncus spp. was positively associated with decreased biosynthesis of ansamycin only ( p = 0.001). No overlapping signaling pathways were modulated by Bacteroides caccae or Anaerotruncus spp. Conclusions: Our results revealed that fecal Anaerotruncus spp. and Bacteroides ...
    Keywords dysbiosis ; gut microbiota ; microbiome ; non-small-cell lung cancer ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: FAK in Cancer

    Hsiang-Hao Chuang / Yen-Yi Zhen / Yu-Chen Tsai / Cheng-Hao Chuang / Michael Hsiao / Ming-Shyan Huang / Chih-Jen Yang

    International Journal of Molecular Sciences, Vol 23, Iss 1726, p

    From Mechanisms to Therapeutic Strategies

    2022  Volume 1726

    Abstract: Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, ... ...

    Abstract Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
    Keywords focal adhesion kinase ; metastasis ; drug resistance ; combination therapy ; tumor microenvironment ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 571
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: FAK Executes Anti-Senescence via Regulating EZH2 Signaling in Non-Small Cell Lung Cancer Cells

    Hsiang-Hao Chuang / Ming-Shyan Huang / Yen-Yi Zhen / Cheng-Hao Chuang / Ying-Ray Lee / Michael Hsiao / Chih-Jen Yang

    Biomedicines, Vol 10, Iss 8, p

    2022  Volume 1937

    Abstract: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase overexpressed in various cancer types that plays a critical role in tumor progression. Accumulating evidence suggests that targeting FAK, either alone or in combination with other agents, may ... ...

    Abstract Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase overexpressed in various cancer types that plays a critical role in tumor progression. Accumulating evidence suggests that targeting FAK, either alone or in combination with other agents, may serve as an effective therapeutic strategy for numerous cancers. In addition to retarding proliferation, metastasis, and angiogenesis, FAK inhibition triggers cellular senescence in lung cancer cells. However, the detailed mechanism remains enigmatic. In the present study, we found that FAK inhibition not only elicits DNA-damage signaling but also downregulates enhancer of zeste homolog 2 (EZH2) expression. The manipulation of FAK expression influences EZH2 expression and corresponding signaling in vitro. Immunohistochemistry shows that active FAK signaling corresponds with the activation of the EZH2-mediated signaling cascade in lung-cancer-cells-derived tumor tissues. We also found that ectopic EZH2 expression attenuates FAK-inhibition-induced cellular senescence in lung cancer cells. Our results identify EZH2 as a critical downstream effector of the FAK-mediated anti-senescence pathway. Targeting FAK-EZH2 axis-induced cellular senescence may represent a promising therapeutic strategy for restraining tumor growth.
    Keywords FAK ; EZH2 ; senescence ; lamin A/C ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: In-mold and Machine Sensing and Feature Extraction for Optimized IC-tray Manufacturing

    Shih-Chih Nian / Yung-Chih Fang / Ming-Shyan Huang

    Polymers, Vol 11, Iss 8, p

    2019  Volume 1348

    Abstract: Injection molding is a mature technology that has been used for decades; factors including processed raw materials, molds and machines, and the processing parameters can cause significant changes in product quality. Traditionally, researchers have ... ...

    Abstract Injection molding is a mature technology that has been used for decades; factors including processed raw materials, molds and machines, and the processing parameters can cause significant changes in product quality. Traditionally, researchers have attempted to improve injection molding quality by controlling screw position, injection and packing pressures, and mold and barrel temperatures. However, even when high precision control is applied, the geometry of the molded part tends to vary between different shots. Therefore, further research is needed to properly understand the factors affecting the melt in each cycle so that more effective control strategies can be implemented. In the past, injection molding was a “black box”, so when based on statistical experimental methods, computer-aided simulations or operator experience, the setting of ideal process parameters was often time consuming and limited. Using advanced sensing technology, the understanding of the injection molding process is transformed into a “grey box” that reveals the physical information about the flow behavior of the molten resin in the cavity. Using the process parameter setting data provided by the machine, this study developed a scientific method for optimal parameter adjustment, analyzing and interpreting the injection speed, injection pressure, cavity pressure, and the profile of the injection screw position. In addition, the main parameters for each phase are determined separately, including injection speed/pressure during the mold filling phase, velocity-to-pressure switching point, packing pressure and time. In this study, the IC tray was taken as an example. The experimental results show that the method can effectively reduce the warpage of the IC-tray from 0.67 mm to 0.20 mm. In addition, the parameters profiles obtained by parameter optimization can be applied for continuous mass production and process monitoring.
    Keywords feature extraction ; IC-tray ; injection molding ; parameter optimization ; Organic chemistry ; QD241-441
    Subject code 670
    Language English
    Publishing date 2019-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Tie-Bar Elongation Based Filling-To-Packing Switchover Control and Prediction of Injection Molding Quality

    Jian-Yu Chen / Chun-Ying Liu / Ming-Shyan Huang

    Polymers, Vol 11, Iss 7, p

    2019  Volume 1168

    Abstract: Filling-to-packing switchover (also called V/P switchover) is critical for assuring injection molding quality. An improper V/P switchover setting may result in various defects of injection-molded parts, such as excessive residual stress, flash, short ... ...

    Abstract Filling-to-packing switchover (also called V/P switchover) is critical for assuring injection molding quality. An improper V/P switchover setting may result in various defects of injection-molded parts, such as excessive residual stress, flash, short shot, and warpage, etc. To enhance a consistent molding quality, recent V/P switchover approaches adopt cavity pressure profiles requiring sensors embedded in mold cavities, which is invasive to mold cavities and more expensive. Instead of using cavity pressure sensors, by working with the most popular screw position switchover control, this study hereby proposes a novel approach of tuning V/P switchover timing using a tie-bar elongation profile. In this investigation, a dumbbell testing specimen mold is applied to verify the feasibility of the method proposed. The results show that the mold filling and packing stages can be observed along the tie-bar elongation profile, detected by mounting strain gauges on the tie bars. Also, the characteristics of the cavity pressure are similar to those of the tie-bar elongation profile under a proper clamping force condition. Moreover, the varying process parameter settings which include injection speed, V/P switchover point, and holding pressure, can be reflected in these profiles. By extracting their characteristics, the application of the V/P switchover is proved to be realistic. This research conducted an experiment to verify the proposed V/P switchover decision method based on the tie-bar elongation profile. The result showed that the fluctuation of the part’s weight corresponding to a slight change of the barrel’s temperature from 210 °C to 215 °C can be successfully controlled with this method. Besides, the maximum clamping force increment extracted from the tie-bar elongation profile was found to be a good indicator for online monitoring of the reground material variation.
    Keywords clamping force ; filling-to-packing switchover ; injection molding ; process control ; tie-bar elongation ; Organic chemistry ; QD241-441
    Subject code 670
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy

    Hsiang-Hao Chuang / Yen-Yi Zhen / Yu-Chen Tsai / Cheng-Hao Chuang / Ming-Shyan Huang / Michael Hsiao / Chih-Jen Yang

    Biomedicines, Vol 9, Iss 359, p

    2021  Volume 359

    Abstract: Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in ...

    Abstract Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
    Keywords Pin1 ; cis - trans isomerization ; tumorigenesis ; cell motility ; metastasis ; cancer therapeutics ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: A co-expressed gene status of adenylate kinase 1/4 reveals prognostic gene signature associated with prognosis and sensitivity to EGFR targeted therapy in lung adenocarcinoma

    Yi-Hua Jan / Tsung-Ching Lai / Chih-Jen Yang / Ming-Shyan Huang / Michael Hsiao

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 11

    Abstract: Abstract Cancer cells utilize altered bioenergetics to fuel uncontrolled proliferation and progression. At the core of bioenergetics, adenine nucleotides are the building blocks for nucleotide synthesis, energy transfer and diverse metabolic processes. ... ...

    Abstract Abstract Cancer cells utilize altered bioenergetics to fuel uncontrolled proliferation and progression. At the core of bioenergetics, adenine nucleotides are the building blocks for nucleotide synthesis, energy transfer and diverse metabolic processes. Adenylate kinases (AK) are ubiquitous phosphotransferases that catalyze the conversion of adenine nucleotides and regulate the homeostasis of nucleotide ratios within cellular compartments. Recently, different isoforms of AK have been shown to induce metabolic reprograming in cancer and were identified as biomarkers for predicting disease progression. Here we aim to systemically analyze the impact of all AK-associated gene signatures on lung adenocarcinoma patient survival and decipher the value for therapeutic interventions. By analyzing TCGA Lung Adenocarcinoma (LUAD) RNA Seq data, we found gene signatures from AK4 and AK1 have higher percentage of prognostic genes compared to other AK-gene signatures. A 118-gene signature was identified from consensus gene expression in AK1 and AK4 prognostic gene signatures. Immunohistochemistry (IHC) analyses in 140 lung adenocarcinoma patients showed overexpression of AK4 significantly correlated with worse overall survival (P = 0.001) whereas overexpression of AK1 significantly associated with good prognosis (P = 0.009). Furthermore, reduced AK4 expression by shRNA reduced the EGFR protein expression in EGFR mutation cells. The inhibition of AK4-AK1 signal might provide a potential target for synergistic effect in target therapy in lung cancer patients.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2019-08-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Low TIP30 Protein Expression is Associated with a High Risk of Metastasis and Poor Prognosis for Non-Small-Cell Lung Cancer

    Chao-Ju Chen / Po-An Chou / Ming-Shyan Huang / Yu-Peng Liu

    Journal of Clinical Medicine, Vol 8, Iss 1, p

    2019  Volume 83

    Abstract: Non-small-cell lung cancer (NSCLC) is a deadly malignancy with a high prevalence worldwide. A reliable biomarker that can predict the prognosis is required to determine the therapeutic strategy. TIP30 was first identified as a tumor suppressor. A number ... ...

    Abstract Non-small-cell lung cancer (NSCLC) is a deadly malignancy with a high prevalence worldwide. A reliable biomarker that can predict the prognosis is required to determine the therapeutic strategy. TIP30 was first identified as a tumor suppressor. A number of mechanistic studies indicated that the downregulation of TIP30 enhances the stemness, migration and survival of NSCLC cells. However, the clinical relevance of TIP30 for the prognosis of NSCLC is unknown. From a meta-analysis of public microarray datasets, we showed the upregulation of TIP30 mRNA expression was associated with worse overall survival of NSCLC patients, which contradicted the tumor suppressive role of TIP30. It is worth noting that the TIP30 mRNA expression was not correlated with its protein expression in 15 NSCLC cell lines. The results from the immunohistochemistry of a tissue microarray showed the downregulation of the TIP30 protein expression was associated with a higher risk of metastasis. In addition, the decrease in TIP30 protein was correlated with worse overall and progression-free survival of the NSCLC patients. Multivariate analysis suggested the loss of TIP30 protein was an independent factor to predict the poor prognosis of NSCLC. Our data indicated that TIP30 protein, not mRNA, would be a potential prognostic biomarker of NSCLC.
    Keywords non-small-cell lung cancer (NSCLC) ; Tat-interacting protein 30 (TIP30) ; biomarker ; precision medicine ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top