LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity

    Joëlle Al-Choboq / Mélanie L. Ferlazzo / Laurène Sonzogni / Adeline Granzotto / Laura El-Nachef / Mira Maalouf / Elise Berthel / Nicolas Foray

    International Journal of Molecular Sciences, Vol 23, Iss 1570, p

    Influence of the ATM Protein Kinase

    2022  Volume 1570

    Abstract: Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is ... ...

    Abstract Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1—a subset of USH—by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (ɣH2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.
    Keywords Usher syndrome ; radiosensitivity ; DNA double-strand breaks ; ATM ; ionizing radiation ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Molecular and Cellular Responses to Ionization Radiation in Untransformed Fibroblasts from the Rothmund–Thomson Syndrome

    Joëlle Al-Choboq / Myriam Nehal / Laurène Sonzogni / Adeline Granzotto / Laura El Nachef / Juliette Restier-Verlet / Mira Maalouf / Elise Berthel / Bernard Aral / Nadège Corradini / Michel Bourguignon / Nicolas Foray

    Radiation, Vol 3, Iss 2, Pp 21-

    Influence of the Nucleo-Shuttling of the ATM Protein Kinase

    2023  Volume 38

    Abstract: The Rothmund–Thomson syndrome (RTS) is a rare autosomal recessive disease associated with poikiloderma, telangiectasias, sun-sensitive rash, hair growth problems, juvenile cataracts and, for a subset of some RTS patients, a high risk of cancer, ... ...

    Abstract The Rothmund–Thomson syndrome (RTS) is a rare autosomal recessive disease associated with poikiloderma, telangiectasias, sun-sensitive rash, hair growth problems, juvenile cataracts and, for a subset of some RTS patients, a high risk of cancer, especially osteosarcoma. Most of the RTS cases are caused by biallelic mutations of the RECQL4 gene, coding for the RECQL4 DNA helicase that belongs to the RecQ family. Cellular and post-radiotherapy radiosensitivity was reported in RTS cells and patients since the 1980s. However, the molecular basis of this particular phenotype has not been documented to reliably link the biological and clinical responses to the ionizing radiation (IR) of cells from RTS patients. The aim of this study was therefore to document the specificities of the radiosensitivity associated with RTS by examining the radiation-induced nucleo-shuttling of ATM (RIANS) and the recognition and repair of the DNA double-strand breaks (DSB) in three skin fibroblasts cell lines derived from RTS patients and two derived from RTS patients’ parents. The results showed that the RTS fibroblasts tested were associated with moderate but significant radiosensitivity, a high yield of micronuclei, and impaired DSB recognition but normal DSB repair at 24 h likely caused by a delayed RIANS, supported by the sequestration of ATM by some RTS proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from RTS patients at both molecular and cellular scales.
    Keywords Rothmund–Thomson syndrome ; radiosensitivity ; DNA double-strand breaks ; ATM ; ionizing radiation ; Medical physics. Medical radiology. Nuclear medicine ; R895-920
    Subject code 616
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Transient alteration of cellular redox buffering before irradiation triggers apoptosis in head and neck carcinoma stem and non-stem cells.

    Anthony Boivin / Maité Hanot / Céline Malesys / Mira Maalouf / Robert Rousson / Claire Rodriguez-Lafrasse / Dominique Ardail

    PLoS ONE, Vol 6, Iss 1, p e

    2011  Volume 14558

    Abstract: BACKGROUND:Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting ... ...

    Abstract BACKGROUND:Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. METHODOLOGY/PRINCIPAL FINDINGS:Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10% of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. CONCLUSIONS:This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials of endogenous redox modulation to enhance the cytotoxic effects of radiotherapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 571
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top