LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Modelling of a SMA Blade Twist System Suited for Demonstration in Wind Tunnel and Whirl Tower Plants

    Salvatore Ameduri / Monica Ciminello / Antonio Concilio / Ignazio Dimino / Bernardino Galasso / Mariano Guida / Giovanni Bruno / Marco Fabio Miceli

    Applied Sciences, Vol 13, Iss 21, p

    2023  Volume 12039

    Abstract: In this work, the modeling of a demonstrator of a morphing system aimed at altering the twist of a rotorcraft blade is presented. The device was conceived for two different representative environments: the wind tunnel plant of the University of Bristol ... ...

    Abstract In this work, the modeling of a demonstrator of a morphing system aimed at altering the twist of a rotorcraft blade is presented. The device was conceived for two different representative environments: the wind tunnel plant of the University of Bristol and the whirl tower facility of the DLR, for tests in fixed and wing rotary configurations, respectively. The concept, conceived and matured within the European Project of SABRE, is based on shape memory alloys, SMA. This technology was selected for its intrinsic compactness and solidity, which better meet the requirements of a typical blade structure, being extremely flexible and subjected to relevant inertial loads. A dedicated structural layout was conceived to favor the working modality of the SMA torsional system; this architecture was tailored both to absorb the typical actions occurring onto a blade and to assure a certain level of pre-twist necessary for the SMA strain recovery. The activation of the SMA was performed through an electrothermal helicoidal coil wrapped around it. A dedicated network of sensors was integrated within the structure to measure the impact of the different actions on the blade system. This subsystem, functional to shape reconstruction operations, is capable of splitting the contribution of the loads to pure twist and flapping. At first, the requirements imposed by the two test facilities were elaborated together to the operational needs, arriving at the issue of the most relevant specifications. Secondly, the conceptual and advanced design were considered, demonstrating, first, the feasibility of the concept and, then, its compliance with the test environment. The work ends with two different layouts, conceived respectively for the tests in fixed and rotary wing configurations. For both of them, a performance estimate was addressed, and a discussion on the advantages and disadvantages was presented.
    Keywords blade twist ; SMA torsional actuation ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 670 ; 600
    Language English
    Publishing date 2023-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Damage Detection of CFRP Stiffened Panels by Using Cross-Correlated Spatially Shifted Distributed Strain Sensors

    Monica Ciminello / Natalino Daniele Boffa / Antonio Concilio / Bernardino Galasso / Fulvio Romano / Ernesto Monaco

    Applied Sciences, Vol 10, Iss 2662, p

    2020  Volume 2662

    Abstract: This paper presents a cross-correlation function-based method applied to a spatially shifted differential strain readout vectors using distributed sensors under backscattering random noise and impact excitations. Structural damage is generated by low/ ... ...

    Abstract This paper presents a cross-correlation function-based method applied to a spatially shifted differential strain readout vectors using distributed sensors under backscattering random noise and impact excitations. Structural damage is generated by low/medium energy impact on two aeronautical 24-ply CFRP (carbon fiber reinforced plastic) stiffened panels. Two different drop impact locations, two different sensor layouts and two different post-impact solicitations are provided for a skin-stringer debonding detection and length estimation. The differential signal with respect to an arbitrarily selected grounding is used. Then the effects of noise filtering are evaluated post-processing the differential signal by cross-correlating two strain vectors having one sensor gauge position lag. A Rayleigh backscattering sensing technology, with 5 mm of spatial resolution, is used to log the strain map. The results show a good coherence with respect to the NDI (nondestructive inspection) performed by ultrasonic C-scan (an ultrasonic imaging system) flaw detector.
    Keywords structural damage ; non-model-based method ; distributed fiber optic sensors ; cross-correlation ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 621
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top