LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Muzamil shah"
  2. AU="Bhat, Aishwarya"
  3. AU="Hossain, Md Zakir"
  4. AU=Jiang Xianhan
  5. AU="Mousavi, Seyyed Meysam"
  6. AU=Paulson J C
  7. AU="Saif, Tahir"
  8. AU=Alam Sabiha AU=Alam Sabiha
  9. AU="Braniff, Julia"
  10. AU="Kasim, Sazzli"
  11. AU=Brown Samuel M
  12. AU="Daubenberger, Claudia A."
  13. AU="Esteban, L"
  14. AU=Tyrka Audrey R.
  15. AU="Álvarez-Valenzuela, Francisco D"
  16. AU="Akrofi, M.M."
  17. AU="Torres, Daiana Rodrigues"
  18. AU="Bercovici, Nicholas"
  19. AU="Di Maio, Ginevra"
  20. AU="Indelicarto, Matthew"
  21. AU="Ma, Yan"
  22. AU="Ngan, CDR Kelly"
  23. AU="Arzamendi, Dabit"
  24. AU="Rezende, Carlos Eduardo Borges"
  25. AU="Brunvand, E."
  26. AU="Gateno, Jaime"

Suchergebnis

Treffer 1 - 9 von insgesamt 9

Suchoptionen

  1. Artikel ; Online: Delpinium uncinatum mediated green synthesis of AgNPs and its antioxidant, enzyme inhibitory, cytotoxic and antimicrobial potentials.

    Hina Rehman / Waqar Ali / Mohammad Ali / Nadir Zaman Khan / Muhammad Aasim / Ayaz Ali Khan / Tariq Khan / Muhammad Ali / Ashaq Ali / Muhammad Ayaz / Muzamil Shah / Syed Salman Hashmi

    PLoS ONE, Vol 18, Iss 4, p e

    2023  Band 0280553

    Abstract: Green synthesis of nanoparticles is becoming a method of choice for biological research due to its environmentally benign outcomes, stability and ease of synthesis. In this study, silver nanoparticles (AgNPs) were synthesized using stem (S-AgNPs), root ( ... ...

    Abstract Green synthesis of nanoparticles is becoming a method of choice for biological research due to its environmentally benign outcomes, stability and ease of synthesis. In this study, silver nanoparticles (AgNPs) were synthesized using stem (S-AgNPs), root (R-AgNPs) and mixture of stem and root (RS-AgNPs) of Delphinium uncinatum. The synthesized nanoparticles were characterized by standardized techniques and evaluated for their antioxidant, enzyme inhibition, cytotoxic and antimicrobial potentials. The AgNPs exhibited efficient antioxidant activities and considerable enzyme inhibition potential against alpha amylase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. S-AgNPs showed strong cytotoxicity against human hepato-cellular carcinoma cells (HepG2) and high enzyme inhibitory effect (IC50 values 27.5μg/ml for AChE and 22.60 μg/ml for BChE) compared to R-AgNPs and RS-AgNPs. RS-AgNPs showed significant inhibition of Klebsiella pneumoniae and Aspergillus flavus and exhibited higher biocompatibility (<2% hemolysis) in human red blood cells hemolytic assays. The present study showed that biologically synthesized AgNPs using the extract of various parts of D. uncinatum have strong antioxidant and cytotoxic potentials.
    Schlagwörter Medicine ; R ; Science ; Q
    Thema/Rubrik (Code) 571
    Sprache Englisch
    Erscheinungsdatum 2023-01-01T00:00:00Z
    Verlag Public Library of Science (PLoS)
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Phytochemical analysis and versatile in vitro evaluation of antimicrobial, cytotoxic and enzyme inhibition potential of different extracts of traditionally used Aquilegia pubiflora Wall. Ex Royle

    Hasnain Jan / Hazrat Usman / Muzamil Shah / Gouhar Zaman / Sadaf Mushtaq / Samantha Drouet / Christophe Hano / Bilal Haider Abbasi

    BMC Complementary Medicine and Therapies, Vol 21, Iss 1, Pp 1-

    2021  Band 19

    Abstract: Abstract Background Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and ... ...

    Abstract Abstract Background Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. Methods Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. Results HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 μgAAE/mg, 89.2 ± 2.4 μgAAE/mg, 277.5 ± 2.9 μM, 289.9 ± 1.74 μM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. Conclusions Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.
    Schlagwörter Anti-cancer ; HPLC ; Flavonoids ; Antimicrobial ; Anti-aging ; Inflammatory ; Other systems of medicine ; RZ201-999
    Thema/Rubrik (Code) 571
    Sprache Englisch
    Erscheinungsdatum 2021-06-01T00:00:00Z
    Verlag BMC
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  3. Artikel ; Online: A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications

    Hasnain Jan / Roby Gul / Anisa Andleeb / Sana Ullah / Muzamil Shah / Mehnaz Khanum / Imran Ullah / Christophe Hano / Bilal Haider Abbasi

    Journal of Saudi Chemical Society, Vol 25, Iss 8, Pp 101297- (2021)

    2021  

    Abstract: Platinum nanoparticles (PtNPs) are an attractive candidate for application in many areas of biotechnology, nanomedicine, and pharmacology, owing to their large surface area and biological properties. Different approaches, including physical, chemical, ... ...

    Abstract Platinum nanoparticles (PtNPs) are an attractive candidate for application in many areas of biotechnology, nanomedicine, and pharmacology, owing to their large surface area and biological properties. Different approaches, including physical, chemical, and biological (plants, bacteria, algae, and fungi) are presently being used for synthesis of PtNPs. However, these conventional methods (physical and chemical) present potential threat to health and environment because of the use of harsh chemicals and hazardous reaction conditions, except biological synthesis means which are substantially considered ecofriendly, economic and non-toxic. PtNPs are extensively studied due to their potent physicochemical and biological properties including antioxidant, antimicrobial and anticancer properties. This review offers a comprehensive assessment of the current knowledge about the synthesis of PtNPs using physical, chemical, and biological (plants, bacteria, algae, and fungi) approaches and their potential antimicrobial and biomedical applications especially in cancer and photothermal therapy. Interestingly, this review highlights role of PtNPs as nano-diagnostic and nanomedicine. Furthermore, nanotoxicity related to PtNPs, as well as the future prospects and opportunities of PtNPs based nano-therapeutics are also discussed. Overall, the emerging potential biological applications of PtNPs makes it viable to foresee their more promising outcomes in biomedical field in the upcoming future.
    Schlagwörter Platinum ; Nanomedicine ; Antimicrobial ; Anti-cancer ; Biosynthesis ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 540
    Sprache Englisch
    Erscheinungsdatum 2021-08-01T00:00:00Z
    Verlag Elsevier
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  4. Artikel ; Online: Chitosan Elicitation Impacts Flavonolignan Biosynthesis in Silybum marianum (L.) Gaertn Cell Suspension and Enhances Antioxidant and Anti-Inflammatory Activities of Cell Extracts

    Muzamil Shah / Hasnain Jan / Samantha Drouet / Duangjai Tungmunnithum / Jafir Hussain Shirazi / Christophe Hano / Bilal Haider Abbasi

    Molecules, Vol 26, Iss 4, p

    2021  Band 791

    Abstract: Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. ... ...

    Abstract Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the ...
    Schlagwörter antioxidant ; anti-inflammatory ; chitosan ; flavonoids ; phenolics ; Silybum marianum ; Organic chemistry ; QD241-441
    Thema/Rubrik (Code) 540 ; 500
    Sprache Englisch
    Erscheinungsdatum 2021-02-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  5. Artikel ; Online: Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L.

    Razia Khurshid / Muhammad Asad Ullah / Duangjai Tungmunnithum / Samantha Drouet / Muzamil Shah / Afifa Zaeem / Safia Hameed / Christophe Hano / Bilal Haider Abbasi

    PLoS ONE, Vol 15, Iss 6, p e

    2020  Band 0233963

    Abstract: Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important ... ...

    Abstract Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (β-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.
    Schlagwörter Medicine ; R ; Science ; Q
    Thema/Rubrik (Code) 580
    Sprache Englisch
    Erscheinungsdatum 2020-01-01T00:00:00Z
    Verlag Public Library of Science (PLoS)
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  6. Artikel ; Online: Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil ( Ocimum basilicum L. var purpurascens )

    Munazza Nazir / Muhammad Asad Ullah / Sadia Mumtaz / Aisha Siddiquah / Muzamil Shah / Samantha Drouet / Christophe Hano / Bilal Haider Abbasi

    Molecules, Vol 25, Iss 5, p

    2020  Band 1072

    Abstract: The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different ...

    Abstract The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different time durations, either alone and/or in combination. Individual treatments of both UV-C and melatonin proved to be more effective than combine treatments. Results indicated that UV-C (10 min) exposure increased rosmarinic acid (134.5 mg/g dry weight (DW)), which was 2.3-fold greater than control. Chichoric acid (51.52 mg/g DW) and anthocyanin (cyanide 0.50 mg/g DW) were almost 4.1-fold, while peonidin was found 2.7-fold higher in UV-C (50 min) exposure. In the case of melatonin, 1.0 mg/L concentrations showed maximum rosmarinic acid (79.4 mg/g DW) accumulation; i.e., 1.4-fold more, as compared to the control. However, 2 mg/L melatonin accumulate chichoric acid (39.99 mg/g DW) and anthocyanin (cyanide: 0.45 mg/g DW and peonidin: 0.22 mg/g DW); i.e., 3.2, 3.7 and 2.0-fold increase, as compared to the control, respectively. On the other hand, melatonin-combined treatment (melatonin (Mel) (4 mg/L) + UV-C (20 min)) was proved to be effective in caffeic acid elicitation, which was 1.9-fold greater than the control. Furthermore, antioxidant potential was evaluated by both in vitro (DPPH, ABTS and FRAP assays) and in cellulo methods. Maximum in vitro antioxidant activity (DPPH: 90.6% and ABTS: 1909.5 µM) was observed for UV-C (50 min)-treated cultures. The highest in vitro antioxidant activity measured with the ABTS assay as compared to the FRAP assay, suggesting the main contribution of antioxidants from basil callus extracts acting through a hydrogen atom transfer (HAT) over an electron transfer (ET)-based mechanism. Cellular antioxidant assay was evaluated by production of ROS/RNS species using yeast cell cultures and further confirmed the protective action of the corresponding callus extracts against oxidative stress. Overall, both melatonin and UV-C are here proved ...
    Schlagwörter elicitation ; melatonin ; phenylpropanoid metabolites ; ultraviolet rays ; antioxidant activities ; Organic chemistry ; QD241-441
    Thema/Rubrik (Code) 500
    Sprache Englisch
    Erscheinungsdatum 2020-02-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  7. Artikel ; Online: Green Bio-Assisted Synthesis, Characterization and Biological Evaluation of Biocompatible ZnO NPs Synthesized from Different Tissues of Milk Thistle ( Silybum marianum )

    Bilal Haider Abbasi / Muzamil Shah / Syed Salman Hashmi / Munazza Nazir / Sania Naz / Waqar Ahmad / Inam Ullah Khan / Christophe Hano

    Nanomaterials, Vol 9, Iss 8, p

    2019  Band 1171

    Abstract: The purpose of the current study was green synthesis of ZnO-nanoparticles (NPs) from different tissues of Silybum marianum (L.) Gaernt. (i.e., seeds, wild plant, in vitro derived plantlets and callus cultures) followed by extensive characterization and ... ...

    Abstract The purpose of the current study was green synthesis of ZnO-nanoparticles (NPs) from different tissues of Silybum marianum (L.) Gaernt. (i.e., seeds, wild plant, in vitro derived plantlets and callus cultures) followed by extensive characterization and evaluation of their biological potency. ZnO-NPs thus synthesized were subjected to characterization using standard techniques such as XRD, FTIR and SEM. Thermal stability of synthesized NPs was also evaluated using thermo-gravimetric analysis. Highly stable crystalline NPs with size ranging between 30.8 and 46.0 nm were obtained from different tissues of S. marianum . These NPs have revealed a wide range of biological applications showing antioxidant, moderate α-amylase inhibitor, antibacterial and cytotoxic potencies. The highest antibacterial activity (20 ± 0.98 mm) was shown by seed extract-mediated ZnO NPs against Staphylococcus aureus (ATCC-6538). Seed extract-mediated ZnO NPs also showed the most potent antioxidant activity (27.7 ± 0.9 µgAAE/mg, 23.8 ± 0.7 µgAAE/mg and 12.7 ± 1.9% total antioxidant capacity (TAC), total reducing power (TRP) and DPPH-free radical scavenging assay (FRSA), respectively). All of the synthesized ZnO NPs also showed cytotoxic activity against the hepato-cellular carcinoma (HepG2) human cells. Interestingly, these ZnO NPs were also highly biocompatible, as evidenced by the brine shrimp lethality and human red blood cells hemolytic assays. Among all of the NPs synthesized and used, the effect of seed extract-mediated NPs was found to be most promising for future applications.
    Schlagwörter Zinc Oxide (ZnO) ; Nanoparticles (NPs) ; characterization ; Silybum marianum ; in vitro plantlets ; cytotoxic assay ; green synthesis ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 540
    Sprache Englisch
    Erscheinungsdatum 2019-08-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  8. Artikel ; Online: Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn.

    Muzamil Shah / Muhammad Asad Ullah / Samantha Drouet / Muhammad Younas / Duangjai Tungmunnithum / Nathalie Giglioli-Guivarc’h / Christophe Hano / Bilal Haider Abbasi

    Molecules, Vol 24, Iss 7, p

    2019  Band 1207

    Abstract: Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in ... ...

    Abstract Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.
    Schlagwörter Silybum marianum (L.) Gaertn ; light regimes ; melatonin ; antioxidant ; phenolics ; flavonoids ; silymarin ; anti-inflammatory ; Organic chemistry ; QD241-441
    Thema/Rubrik (Code) 580
    Sprache Englisch
    Erscheinungsdatum 2019-03-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  9. Artikel ; Online: Integrated Effects of Rhizobial Inoculum and Inorganic Fertilizers on Wheat Yield and Yield Components

    Muhammad Adnan / Zahir Shah / Asif Khan / Muzamil shah / Gohar Ali Khan / Azaz Ali / Nisar Ali Khan / Nouman Saleem / Shah Nawaz / Saba Akbar / Sonia Samreen / Kanwal Zaib

    American Journal of Plant Sciences , Vol 05, Iss 13, Pp 2066-

    2014  Band 2073

    Abstract: An experiment was conducted in pots under natural condition with two factor factorial completely randomized design (CRD) (CRD) to investigate the integrated effect of rhizobia inoculums and inorganic fertilizers on growth and yield of wheat crop at The ... ...

    Abstract An experiment was conducted in pots under natural condition with two factor factorial completely randomized design (CRD) (CRD) to investigate the integrated effect of rhizobia inoculums and inorganic fertilizers on growth and yield of wheat crop at The University of Agriculture Peshawar, during 2012-2013. The experiment was comprised of four inoculums (no, lentil, peas and chickpeas) and two NPK levels (recommended 120:90:60 kg·ha - 1 & 20% less of recommended). It was observed that inoculation of wheat by rhizobia significantly increased tillers per plant by a maximum of 42%, plant height by 13%, grain per spike by 16%, 100 grain weight by 10%, biological and grain yield by 10% over un-inoculated (control) treatment. Among inoculums, peas inoculum was found to be the most efficient for all traits except plant height where chickpea inoculum performed better. Similarly recommended NPK significantly increased tillers per plant by 33%, plant height by 19%, grain per spike by 9%, 100 grain weight by 10%, biological yield by 8% and grain yield by 10% compared with 20% less of recommended NPK. Interactive effect of inoculum x NPK was significant for tillers per plant, grain per spike, grain yield and non-significant for plant height, 100 grain weight and biological yield. However, it was evident from the results that inoculation improved all traits both under recommended and 20% less of recommended NPK. The persistent good performance of peas and lentil rhizobial inoculation in wheat growth exhibited that this could be used as a plant growth promoting rhizobacteria for wheat and other cereal crops in prevailing soil and climatic conditions.
    Schlagwörter Yield Components ; Rhizobial Inoculum ; Wheat ; Recommended NPK ; Inorganic Fertilizer ; Plant culture ; SB1-1110 ; Agriculture ; S
    Sprache Englisch
    Erscheinungsdatum 2014-06-01T00:00:00Z
    Verlag Scientific Research Publishing
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang