LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: p53 Family in Resistance to Targeted Therapy of Melanoma

    Ignacija Vlašić / Anđela Horvat / Ana Tadijan / Neda Slade

    International Journal of Molecular Sciences, Vol 24, Iss 1, p

    2022  Volume 65

    Abstract: Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of ... ...

    Abstract Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53 pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy. Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene and two other family members, TP63 and TP73 , encode numerous protein isoforms that exhibit diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are expressed in melanoma cell lines and tumor samples, and several of them have already shown to have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion, migration, and response to therapy. Of special interest are p53 family isoforms with increased expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells, implying that modulating their expression or targeting their functional pathways could be a potential therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.
    Keywords melanoma ; MAPK inhibitors ; resistance ; p53 ; p63 ; p73 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 572
    Language English
    Publishing date 2022-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Characterization of Vemurafenib-Resistant Melanoma Cell Lines Reveals Novel Hallmarks of Targeted Therapy Resistance

    Martina Radić / Ignacija Vlašić / Maja Jazvinšćak Jembrek / Anđela Horvat / Ana Tadijan / Maja Sabol / Marko Dužević / Maja Herak Bosnar / Neda Slade

    International Journal of Molecular Sciences, Vol 23, Iss 9910, p

    2022  Volume 9910

    Abstract: Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B ... ...

    Abstract Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B and metastatic A375M, with acquired resistance to the RAF inhibitor vemurafenib. The morphology of the resistant primary WM793B melanoma cells showed EMT-like features and exhibited a hybrid phenotype with both epithelial and mesenchymal characteristics. Surprisingly, the vemurafenib-resistant melanoma cells showed a decreased migration ability but also displayed a tendency to collective migration. Signaling pathway analysis revealed the reactivation of MAPK and the activation of the PI3K/AKT pathway depending on the vemurafenib-resistant cell line. The acquired resistance to vemurafenib caused resistance to chemotherapy in primary WM793B melanoma cells. Furthermore, the cell-cycle analysis and altered levels of cell-cycle regulators revealed that resistant cells likely transiently enter into cell cycle arrest at the G0/G1 phase and gain slow-cycling cell features. A decreased level of NME1 and NME2 metastasis suppressor proteins were found in WM793B-resistant primary melanoma, which is possibly the result of vemurafenib-acquired resistance and is one of the causes of increased PI3K/AKT signaling. Further studies are needed to reveal the vemurafenib-dependent negative regulators of NME proteins, their role in PI3K/AKT signaling, and their influence on vemurafenib-resistant melanoma cell characteristics.
    Keywords melanoma ; vemurafenib ; drug resistance ; signaling pathways ; epithelial–mesenchymal transition (EMT) ; slow-cycling cells ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 570
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The Subcellular Localization and Oligomerization Preferences of NME1/NME2 upon Radiation-Induced DNA Damage

    Martina Radić / Marko Šoštar / Igor Weber / Helena Ćetković / Neda Slade / Maja Herak Bosnar

    International Journal of Molecular Sciences, Vol 21, Iss 7, p

    2020  Volume 2363

    Abstract: Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA ... ...

    Abstract Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only as hexamers, it is unclear whether other NME functions require the hexameric form, and how the isoenzyme composition varies in different cellular compartments. To examine the effect of DNA damage on intracellular localization of NME1 and NME2 and the composition of NME oligomers in the nucleus and the cytoplasm, we used live-cell imaging and the FRET/FLIM technique. We showed that exogenous NME1 and NME2 proteins co-localize in the cytoplasm of non-irradiated cells, and move simultaneously to the nucleus after gamma irradiation. The FRET/FLIM experiments imply that, after DNA damage, there is a slight shift in the homomer/heteromer balance between the nucleus and the cytoplasm. Collectively, our results indicate that, after irradiation, NME1 and NME2 engage in mutual functions in the nucleus, possibly performing specific functions in their homomeric states. Finally, we demonstrated that fluorophores fused to the N-termini of NME polypeptides produce the largest FRET effect and thus recommend this orientation for use in similar studies.
    Keywords NME ; NDPK ; Nm23 ; nucleoside diphosphate kinase ; FRET ; FLIM ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 571
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Expression profiles of p53/p73, NME and GLI families in metastatic melanoma tissue and cell lines

    Petar Ozretić / Nikolina Hanžić / Bastien Proust / Maja Sabol / Diana Trnski / Martina Radić / Vesna Musani / Yari Ciribilli / Ivan Milas / Zvonimir Puljiz / Maja Herak Bosnar / Sonja Levanat / Neda Slade

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Abstract Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. ...

    Abstract Abstract Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. To elucidate the potential interplay among these families we analysed the expression profiles of aforementioned genes and proteins in a panel of melanoma cell lines, metastatic melanoma specimens and healthy corresponding tissue. Using qPCR a higher level of NME1 gene expression and lower levels of Δ40p53β, ΔNp73, GLI1, GLI2 and PTCH1 were observed in tumour samples compared to healthy tissue. Protein expression of Δ133p53α, Δ160p53α and ΔNp73α isoforms, NME1 and NME2, and N′ΔGLI1, GLI1FL, GLI2ΔN isoforms was elevated in tumour tissue, whereas ∆Np73β was downregulated. The results in melanoma cell lines, in general, support these findings. In addition, we correlated expression profiles with clinical features and outcome. Higher Δ133p53β and p53α mRNA and both GLI1 mRNA and GLI3R protein expression had a negative impact on the overall survival. Shorter overall survival was also connected with lower p53β and NME1 gene expression levels. In conclusion, all examined genes may have implications in melanoma development and functional inactivity of TP53.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2019-08-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top