LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 23

Search options

  1. Article ; Online: SARS-CoV-2 suppresses TLR4-induced immunity by dendritic cells via C-type lectin receptor DC-SIGN.

    Lieve E H van der Donk / Marta Bermejo-Jambrina / John L van Hamme / Mette M W Volkers / Ad C van Nuenen / Neeltje A Kootstra / Teunis B H Geijtenbeek

    PLoS Pathogens, Vol 19, Iss 10, p e

    2023  Volume 1011735

    Abstract: SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with ...

    Abstract SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with bacteria during severe COVID-19 often cause pneumonia, bacteremia and sepsis. Aberrant immune responses might underlie increased sensitivity to bacteria during COVID-19 but the mechanisms remain unclear. Here we investigated whether SARS-CoV-2 directly suppresses immune responses to bacteria. We studied the functionality of human dendritic cells (DCs) towards a variety of bacterial triggers after exposure to SARS-CoV-2 Spike (S) protein and SARS-CoV-2 primary isolate (hCoV-19/Italy). Notably, pre-exposure of DCs to either SARS-CoV-2 S protein or a SARS-CoV-2 isolate led to reduced type I interferon (IFN) and cytokine responses in response to Toll-like receptor (TLR)4 agonist lipopolysaccharide (LPS), whereas other TLR agonists were not affected. SARS-CoV-2 S protein interacted with the C-type lectin receptor DC-SIGN and, notably, blocking DC-SIGN with antibodies restored type I IFN and cytokine responses to LPS. Moreover, blocking the kinase Raf-1 by a small molecule inhibitor restored immune responses to LPS. These results suggest that SARS-CoV-2 modulates DC function upon TLR4 triggering via DC-SIGN-induced Raf-1 pathway. These data imply that SARS-CoV-2 actively suppresses DC function via DC-SIGN, which might account for the higher mortality rates observed in patients with COVID-19 and bacterial superinfections.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 572 ; 616
    Language English
    Publishing date 2023-10-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Hepatitis B core related antigen in relation to intrahepatic and circulating viral markers, before and after combination therapy

    Robin Erken / Hans L. Zaaijer / Sophie B. Willemse / Ed Bakker / Bart B. Takkenberg / Henk W. Reesink / Neeltje A. Kootstra

    Annals of Hepatology, Vol 26, Iss , Pp 100540- (2021)

    2021  

    Abstract: Introduction and Objectives: Covalently closed circular (ccc)DNA acts as a viral reservoir in the liver of patients with a chronic hepatitis B (CHB) infection and can only be quantified in liver biopsies. Hepatitis B core-related antigen (HBcrAg) levels ... ...

    Abstract Introduction and Objectives: Covalently closed circular (ccc)DNA acts as a viral reservoir in the liver of patients with a chronic hepatitis B (CHB) infection and can only be quantified in liver biopsies. Hepatitis B core-related antigen (HBcrAg) levels in plasma/serum have been proposed to reflect intrahepatic cccDNA-levels and may therefore monitor treatment efficacy. This study aimed to validate the relationship between HBcrAg and other intrahepatic and circulating viral markers in CHB patients with high viral load, before and after combination treatment. Materials and methods: Plasma/serum levels of HBcrAg, HBsAg, HBV-DNA, and HBV pregenomic RNA (HBV-pgRNA), and intrahepatic cccDNA and HBV-DNA levels and fibrosis scores were measured in 89 CHB patients with HBV-DNA levels of >100,000 copies/mL (17,182 IU/mL). Measurements were done before and after a 48-week treatment with pegylated interferon alfa-2a and adefovir in a prospective study (ISRCTN77073364). Results: Baseline HBcrAg-values correlated strongly with intrahepatic cccDNA (ρ 0.77, p < 0.001), intrahepatic HBV-DNA (ρ 0.73, p < 0.001) and plasma/serum HBV-DNA (ρ 0.80, p < 0.001), HBV-pgRNA (ρ 0.80, p < 0.001), and to lesser extend HBsAg (ρ 0.56, p < 0.001). Baseline HBcrAg-levels could not predict functional cure (FC) but HBcrAg-levels declined more strongly in patients who developed FC or HBeAg-loss. Furthermore, most correlations persisted at the end of treatment and follow-up. Conclusions: HBcrAg reflects cccDNA transcription activity more accurately than HBsAg and may replace HBV-DNA as a marker during future treatment regimens, especially when cccDNA transcription is targeted or nucleot(s)ide analogues are included in the treatment regime.
    Keywords Hepatitis B Virus ; HBcrAg ; HBV pgRNA ; Adefovir ; Pegylated interferon ; Viral markers ; Specialties of internal medicine ; RC581-951
    Subject code 610
    Language English
    Publishing date 2021-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels compared to protease inhibitor-based therapy

    Alexander O Pasternak / Jelmer Vroom / Neeltje A Kootstra / Ferdinand WNM Wit / Marijn de Bruin / Davide De Francesco / Margreet Bakker / Caroline A Sabin / Alan Winston / Jan M Prins / Peter Reiss / Ben Berkhout / The Co-morBidity in Relation to Aids (COBRA) Collaboration

    eLife, Vol

    2021  Volume 10

    Abstract: Background: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress human immunodeficiency virus (HIV) replication. Here, we report the results of two cross-sectional studies that compared ... ...

    Abstract Background: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress human immunodeficiency virus (HIV) replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI). Methods: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n = 100, n = 124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either an NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically measured adherence to ART. Results: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho = 0.70 and rho = 0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj = 0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj = 0.048 and padj = 0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals. Conclusions: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral ...
    Keywords HIV ; virus infection ; antiviral drugs ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Subject code 612
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Hepatitis B Virus Protein X Induces Degradation of Talin-1

    Maarten A. A. van de Klundert / Maartje van den Biggelaar / Neeltje A. Kootstra / Hans L. Zaaijer

    Viruses, Vol 8, Iss 10, p

    2016  Volume 281

    Abstract: In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ... ...

    Abstract In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression. Further analysis showed that TLN1 levels indeed modulate HBV transcriptional activity in an HBx-dependent manner. This indicates that HBx-mediated TLN1 degradation is essential and sufficient to stimulate HBV replication. Our data show that TLN1 can act as a viral restriction factor that suppresses HBV replication, and suggest that the HBx relieves this restriction by inducing TLN1 degradation.
    Keywords hepatitis B virus ; protein X ; TLN1 ; HBx ; HBV ; viral restriction ; HBV transcription ; Microbiology ; QR1-502 ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2016-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner.

    Thijs Booiman / Vladimir V Loukachov / Karel A van Dort / Angélique B van 't Wout / Neeltje A Kootstra

    PLoS ONE, Vol 10, Iss 12, p e

    2015  Volume 0144229

    Abstract: Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very important in the context of viral latency. In latently infected cells, viral gene expression is inhibited as a result of the sequestration of host transcription ... ...

    Abstract Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very important in the context of viral latency. In latently infected cells, viral gene expression is inhibited as a result of the sequestration of host transcription factors and epigenetic modifications.In our present study we analyzed the effect of host factor dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) on HIV-1 replication. We show that DYRK1A controls HIV-1 replication by regulating provirus transcription. Downregulation or inhibition of DYRK1A increased LTR-driven transcription and viral replication in cell lines and primary PBMC. Furthermore, inhibition of DYRK1A resulted in reactivation of latent HIV-1 provirus to a similar extent as two commonly used broad-spectrum HDAC inhibitors. We observed that DYRK1A regulates HIV-1 transcription via the Nuclear Factor of Activated T-cells (NFAT) by promoting its translocation from the nucleus to the cytoplasm. Therefore, inhibition of DYRK1A results in increased nuclear levels of NFAT and increased NFAT binding to the viral LTR and thus increasing viral transcription.Our data indicate that host factor DYRK1A plays a role in the regulation of viral transcription and latency. Therefore, DYRK1A might be an attractive candidate for therapeutic strategies targeting the viral reservoir.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Sexually transmitted founder HIV-1 viruses are relatively resistant to Langerhans cell-mediated restriction.

    Nina Hertoghs / Bernadien M Nijmeijer / Nienke H van Teijlingen / Angharad E Fenton-May / Tanja M Kaptein / John L van Hamme / John C Kappes / Neeltje A Kootstra / Beatrice H Hahn / Persephone Borrow / Carla M S Ribeiro / Teunis B H Geijtenbeek

    PLoS ONE, Vol 14, Iss 12, p e

    2019  Volume 0226651

    Abstract: A single HIV-1 variant establishes infection of the host after sexual contact. Identifying the phenotypic characteristics of these Transmitted Founder (T/F) viruses is important to understand the restriction mechanisms during transmission. Langerhans ... ...

    Abstract A single HIV-1 variant establishes infection of the host after sexual contact. Identifying the phenotypic characteristics of these Transmitted Founder (T/F) viruses is important to understand the restriction mechanisms during transmission. Langerhans cells (LCs) are the mucosal dendritic cell subset that has been shown to have a protective role in HIV-1 transmission. Immature LCs efficiently capture and degrade HIV-1 via langerin-mediated restriction. Here we have investigated the capacity of T/F HIV-1 strains to infect mucosal Langerhans cells (LCs). Notably, most T/F variants efficiently infected immature LCs derived from skin and vaginal tissue in contrast to chronic HIV-1 laboratory strains. Next we screened a panel of T/F viruses and their matched 6-month consensus sequence viruses. Interestingly most T/F variants infected immature LCs whereas donor-matched 6-month consensus sequence viruses had lost the ability to infect LCs. However, we also identified 6-month consensus sequence viruses that had retained an ability to infect LCs similar to that of the donor-matched T/F virus. Moreover, some T/F viruses and 6-month consensus sequence viruses were unable to infect immature LCs. Further analyses indicated that T/F viruses are less sensitive to langerin-mediated restriction. These data suggest that T/F HIV-1 variants have the ability to infect immature LCs, which will facilitate transmission.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection

    Bridgette J. Connell / Lucas E. Hermans / Annemarie M. J. Wensing / Ingrid Schellens / Pauline J. Schipper / Petra M. van Ham / Dorien T. C. M. de Jong / Sigrid Otto / Tholakele Mathe / Robert Moraba / José A. M. Borghans / Maria A. Papathanasopoulos / Zita Kruize / Francois W. D. Venter / Neeltje A. Kootstra / Hugo Tempelman / Kiki Tesselaar / Monique Nijhuis

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 10

    Abstract: Abstract HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of ... ...

    Abstract Abstract HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, 38+HLA-DR+ CD4+ T-cells, 38+HLA-DR+ CD8+ T-cells, 70+ CD4+ T-cells, 169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Phosphodiesterase 8a supports HIV-1 replication in macrophages at the level of reverse transcription.

    Thijs Booiman / Viviana Cobos Jiménez / Karel A van Dort / Angélique B van 't Wout / Neeltje A Kootstra

    PLoS ONE, Vol 9, Iss 10, p e

    2014  Volume 109673

    Abstract: BACKGROUND:HIV-1 infected macrophages play a key role in HIV-1 infection. Even during anti-retroviral treatment, macrophages keep producing virus due to suboptimal tissue penetration and reduced efficacy of antiretrovirals. It is therefore of major ... ...

    Abstract BACKGROUND:HIV-1 infected macrophages play a key role in HIV-1 infection. Even during anti-retroviral treatment, macrophages keep producing virus due to suboptimal tissue penetration and reduced efficacy of antiretrovirals. It is therefore of major importance to understand which host factors are involved in HIV-1 replication in macrophages. Previously, we have shown that genetic polymorphisms in phosphodiesterase 8a (PDE8A) are strongly associated with HIV-1 replication in these cells. Here we analyzed the mechanism and regulation of PDE8A in HIV-1 replication in macrophages. RESULTS:PDE8A mRNA expression strongly increases upon differentiation of monocytes into macrophages, which corresponds to the increased susceptibility of mature macrophages to HIV-1. In parallel, expression of microRNA miR-145-5p, predicted to target PDE8A mRNA, strongly decreased. The interaction of miR-145-5p with the 3' UTR of PDE8A mRNA could be experimentally validated, suggesting that indeed miR-145-5p can regulate PDE8A expression levels. Knockdown of PDE8A in macrophages resulted in a decrease in total HIV-1 replication and proviral DNA levels. These observations confirm that PDE8A regulates HIV-1 replication in macrophages and that this effect is mediated through early steps in the viral replication cycle. CONCLUSIONS:PDE8A is highly expressed in macrophages, and its expression is regulated by miR-145-5p. Our findings strongly suggest that PDE8A supports HIV-1 replication in macrophages and that this effect is mediated at the level of reverse transcription.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity

    Femke Stelma / Annikki de Niet / Marjan J. Sinnige / Karel A. van Dort / Klaas P. J. M. van Gisbergen / Joanne Verheij / Ester M. M. van Leeuwen / Neeltje A. Kootstra / Hendrik W. Reesink

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    2017  Volume 10

    Abstract: Abstract Tissue resident memory T cells (TRM) have been identified in various tissues, however human liver TRM to date remain unidentified. TRM can be recognized by CD69 and/or CD103 expression and may play a role in the pathology of chronic hepatitis B ( ...

    Abstract Abstract Tissue resident memory T cells (TRM) have been identified in various tissues, however human liver TRM to date remain unidentified. TRM can be recognized by CD69 and/or CD103 expression and may play a role in the pathology of chronic hepatitis B (CHB) and hepatitis C virus infection (CHC). Liver and paired blood mononuclear cells from 17 patients (including 4 CHB and 6 CHC patients) were isolated and CD8+ T cells were comprehensively analysed by flowcytometry, immunohistochemistry and qPCR. The majority of intrahepatic CD8+ T cells expressed CD69, a marker used to identify TRM, of which a subset co-expressed CD103. CD69 + CD8+ T cells expressed low levels of S1PR1 and KLF2 and a large proportion (>90%) was CXCR6+, resembling liver TRM in mice and liver resident NK cells in human. Cytotoxic proteins were only expressed in a small fraction of liver CD69 + CD8+ T cells in patients without viral hepatitis, however, in livers from CHB patients more CD69 + CD8+ T cells were granzyme B+. In CHC patients, less intrahepatic CD69 + CD8+ T cells were Hobit+ as compared to CHB and control patients. Intrahepatic CD69 + CD8+ T cells likely TRM which have a reduced cytolytic potential. In patients with chronic viral hepatitis TRM have a distinct phenotype.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610 ; 616
    Language English
    Publishing date 2017-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: HIV-1 replication fitness of HLA-B*57/58:01 CTL escape variants is restored by the accumulation of compensatory mutations in gag.

    Esther F Gijsbers / K Anton Feenstra / Ad C van Nuenen / Marjon Navis / Jaap Heringa / Hanneke Schuitemaker / Neeltje A Kootstra

    PLoS ONE, Vol 8, Iss 12, p e

    2013  Volume 81235

    Abstract: Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted ... ...

    Abstract Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570 ; 616
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top