LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Periostin and Discoidin Domain Receptor 1

    Niki Prakoura / Christos Chatziantoniou

    Frontiers in Medicine, Vol

    New Biomarkers or Targets for Therapy of Renal Disease

    2017  Volume 4

    Abstract: Chronic kidney disease (CKD) can be a life-threatening condition, which eventually requires renal replacement therapy through dialysis or transplantation. A lot of effort and resources have been invested the last years in the identification of novel ... ...

    Abstract Chronic kidney disease (CKD) can be a life-threatening condition, which eventually requires renal replacement therapy through dialysis or transplantation. A lot of effort and resources have been invested the last years in the identification of novel markers of progression and targets for therapy, in order to achieve a more efficient prognosis, diagnosis, and treatment of renal diseases. Using experimental models of renal disease, we identified and studied two promising candidates: periostin, a matricellular protein with high expression in bone and dental tissues, and discoidin domain receptor 1 (DDR1), a transmembrane collagen receptor of the tyrosine kinase family. Both proteins are inactive in physiological conditions, while they are highly upregulated during development of renal disease and are primarily expressed at the sites of injury. Further studies demonstrated that both periostin and DDR1 are involved in the regulation of inflammation and fibrosis, two major processes implicated in the development of renal disease. Targeting of either protein by genetic deletion or pharmacogenetic inhibition via antisense oligonucleotides highly attenuates renal damage and preserves renal structure and function in several animal models. The scope of this review is to summarize the existing evidence supporting the role of periostin and DDR1 as novel biomarkers and therapeutic targets in CKD.
    Keywords chronic kidney disease ; biomarkers ; therapeutic targets ; periostin ; discoidin domain receptor 1 ; Medicine (General) ; R5-920
    Subject code 616
    Language English
    Publishing date 2017-05-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Activation of Notch3 in Renal Tubular Cells Leads to Progressive Cystic Kidney Disease

    Sonja Djudjaj / Panagiotis Kavvadas / Niki Prakoura / Roman D. Bülow / Tiffany Migeon / Sandrine Placier / Christos E. Chadjichristos / Peter Boor / Christos Chatziantoniou

    International Journal of Molecular Sciences, Vol 23, Iss 884, p

    2022  Volume 884

    Abstract: Background: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation ...

    Abstract Background: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation of tubular epithelial cells, cellular processes known to be regulated by Notch signaling. Methods: We found increased Notch3 expression in human PKD and renal cell carcinoma biopsies. To obtain insight into the underlying mechanisms and the functional consequences of this abnormal expression, we developed a transgenic mouse model with conditional overexpression of the intracellular Notch3 (ICN3) domain specifically in renal tubules. We evaluated the alterations in renal function (creatininemia, BUN) and structure (cysts, fibrosis, inflammation) and measured the expression of several genes involved in Notch signaling and the mechanisms of inflammation, proliferation, dedifferentiation, fibrosis, injury, apoptosis and regeneration. Results: After one month of ICN3 overexpression, kidneys were larger with tubules grossly enlarged in diameter, with cell hypertrophy and hyperplasia, exclusively in the outer stripe of the outer medulla. After three months, mice developed numerous cysts in proximal and distal tubules. The cysts had variable sizes and were lined with a single- or multilayered, flattened, cuboid or columnar epithelium. This resulted in epithelial hyperplasia, which was observed as protrusions into the cystic lumen in some of the renal cysts. The pre-cystic and cystic epithelium showed increased expression of cytoskeletal filaments and markers of epithelial injury and dedifferentiation. Additionally, the epithelium showed increased proliferation with an aberrant orientation of the mitotic spindle. These phenotypic tubular alterations led to progressive interstitial inflammation and fibrosis. Conclusions: In summary, Notch3 signaling promoted tubular cell proliferation, the alignment of cell division, dedifferentiation and hyperplasia, leading to cystic ...
    Keywords Notch3 ; polycystic kidney disease ; renal cell carcinoma ; renal fibrosis ; chronic kidney disease ; renal inflammation ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The Angiogenesis Inhibitor Isthmin-1 (ISM1) Is Overexpressed in Experimental Models of Glomerulopathy and Impairs the Viability of Podocytes

    Virgilia Sahiri / Jonathan Caron / Elena Roger / Christophe Desterke / Khalil Ghachem / Inna Mohamadou / Justine Serre / Niki Prakoura / Soraya Fellahi / Sandrine Placier / Sahil Adriouch / Lu Zhang / Christos E. Chadjichristos / Christos Chatziantoniou / Hans Kristian Lorenzo / Jean-Jacques Boffa

    International Journal of Molecular Sciences, Vol 24, Iss 2723, p

    2023  Volume 2723

    Abstract: Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in ... ...

    Abstract Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (N ω -nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvβ5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.
    Keywords glomerular diseases ; proteinuria ; chronic kidney disease progression ; FSGS ; podocytes ; apoptosis ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Transgelin Up-Regulation in Obstructive Nephropathy.

    Fani Karagianni / Niki Prakoura / Garyfallia Kaltsa / Panagiotis Politis / Elena Arvaniti / Valeria Kaltezioti / Stelios Psarras / Stamatis Pagakis / Michalis Katsimboulas / Ahmed Abed / Christos Chatziantoniou / Aristidis Charonis

    PLoS ONE, Vol 8, Iss 6, p e

    2013  Volume 66887

    Abstract: Fibrosis is a complex and multifactorial process, affecting the structure and compromising the function of several organs. Among those, renal fibrosis is an important pathological change, eventually leading to renal failure. Proteomic analysis of the ... ...

    Abstract Fibrosis is a complex and multifactorial process, affecting the structure and compromising the function of several organs. Among those, renal fibrosis is an important pathological change, eventually leading to renal failure. Proteomic analysis of the renal parenchyma in the well-established rat model of unilateral ureteral obstruction (UUO model) suggested that transgelin was up-regulated during the development of fibrosis. Transgelin up-regulation was confirmed both at the protein and at the mRNA level. It was observed that at early stages of fibrosis transgelin was mainly expressed in the interstitial compartment and, more specifically, in cells surrounding the glomeruli. Subsequently, it was confirmed that transgelin expressing cells were activated fibroblasts, based on their extensive co-expression of α-SMA and their complete lack of co-distribution with markers of other cell types (endothelial, epithelial and cells of the immune system). These periglomerular fibroblasts exhibited staining for transgelin mainly cytoplasmic but occasionally nuclear as well. In addition, transgelin expression in periglomerular fibroblasts was absent in renal fibrosis developed in a hypertensive model, compared to the UUO model. Promoter analysis indicated that there are several conserved motifs for transcription factor binding. Among those, Kruppel-like factor 6 was found to be up-regulated in transgelin positive periglomerular activated fibroblasts, suggesting a possible involvement in the mechanism of transgelin up-regulation. These data strongly suggest that transgelin is up-regulated in the obstructive nephropathy and could be used as a novel marker for renal fibrosis in the future.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top